
Topics in computer architecture

Compilers and architecture

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1990-2013 Paul J. Drongowski

Compilers and architecture

• Source: "Compilers and computer architecture,"
 William A. Wulf, Computer, July 1981.

• Cost of hardware is falling dramatically
• Cost of software is rising rapidly
• Can hardware simplify the software task
• Goal: Better instruction sets to:
 • Simplify compilers
 • Improve size and speed of compiled programs

• Simplistic interpretation leads to mistaken inferences
 • Myth: Object code efficiency is unimportant
 • Aspirations grow faster than technology
 • Example: Graphical user interfaces
 • Must be "responsive"
 • Costly in both compute and memory resources

• Technological improvements
 • Hardware costs will continue to fall
 • Machine speed will increase
 • Memory will become more dense and less expensive

• User expectations will grow even faster
 • There will never be a memory or cycle surplus
 • Must increase the return from finite resources

Costs (compiler and architecture)
･ Costs and benefits
 1 Designing (writing) compilers
 2 Designing the hardware architecture
 3 Designing the hardware implementation of the ISA
 4 Manufacturing the hardware
 5 Executing the compiler
 6 Executing the compiled programs

･ Observations
 ･ All costs except 4 have increased
 ･ Hardware manufacturing costs have decreased
 ･ VLSI (chip level) design is expensive
 ･ All design activities are one time, non-recurring costs
 ･ Amortize over the number of units sold
 ･ Design a compiler-oriented architecture if
 ﾞ Compiler related costs (design, compile,

execute)
 ﾞ Offsets cost of designing new architecture
 ･ More expensive to design hardware than software
 ･ Software lifetime exceeds lifetime of technology
 ･ Lifetime of architecture is longer than implementation
 ･ Architecture often caters to technology
 ･ Technology can pass an architecture by
 ･ Cost of compiling and execution
 ･ Not strictly comparable to other costs
 ･ Dollar cost can be assigned
 ･ Correct measure: Things that cannot be done as a

Consequence of inefficiencies

Principles

• Regularity
 • Apply a feature in the same way everywhere
 • "Law of least astonishment"

• Orthogonality
 • Divide machine into a set of separate concerns
 • Define each feature in isolation of the others
 • Treat datatypes, addressing, operations independently

• Composability
 • Compose orthogonal, regular notions in arbitrary ways
 • Possible to use every addressing mode with every
 operator and every datatype

Case analysis

• Compiler performs an enormous case analysis
• Objective is to find best object code for source program
• Regularity, orthogonality, composability simplify analysis
• Every deviation is an ad hoc case to be considered
• Example: So-called "general" register machines
 • Implies that a register can be applied to any purpose
 • Exceptions (special cases)
 • Multiplicands in "even" registers
 • Double precision operands in even-odd pairs
 • Zero in indexing field implies no indexing
 (Makes the zeroth register unavailable for indexing)
 • Some operations are only register to register

Specific principles

• One versus all
 • Either precisely one way to do something
 • Or, all ways should be possible

• Provide primitives, not solutions
 • Synthesize solutions from primitives
 • Do not attempt to provide the solution itself

• Observations: one versus all
 • These extreme positions eliminate case analysis
 • Example: Conditional branching
 • EQUALITY and LESS THAN

 ! Only one way to generate each of six relations
 • Direct implementation of all six relations

 ! One obvious coding for each
 • Else, find cheapest code by commuting operands

• Observations: Primitives, not solutions
 • Avoid "semantic clash"
 • Do not put too much semantic content into instruction
 • Otherwise, use is limited to specific context
 • Example: FOR, CASE, PROCEDURE calls
 • Either support only one language well, or
 • So general that they are inefficient for special cases

More specific principles

• Address computations are paths
 • Addressing is not limited to arrays and records
 • Access involves following a path of arbitrary length
 • Path is known at compile time
 • Each setp along the path is:
 • An addition (index into an array or record)
 • An indirection (through a pointer)
 • Machines typically provide a large menu of modes

 ! Requires exhaustive case analysis
 • Primitives, not solutions (again)
 • Different language constraints on procedures,
 tasks and exceptions
 • Example: C switch versus Pascal case

• Runtime environment support
 • Stack frames
 • Displays
 • Static and dynamic links
 • Exceptions
 • Processes

• Deviations
 • Only in implementation-independent fashion
 • Avoid technological anomalies
 • Look beyond current state of technology
 • Conjecture: Violations due to shortsighted view of costs

Regularity

•!Operands treated symmetrically
 • Registers and memory interchangeable
 • Source and destination symmetric

• Operator - datatype regularity
 • Machines usually provide several datatypes
 • Different word sizes
 • Signed/unsigned integer, floating, address
 • Operators rarily treat all regularly
 • Operators for full-word integers but not bytes
 • Condition codes set inconsistently

• Beware of "arithmetic right shift"

• Immediate mode arithmetic

 • Frequently appearing constants: ± 1, 0
 • Special increment/decrement instructions
 • Sometimes useful only for forming addresses
 • Condition codes are not set in the same way
 • Carry not propagated beyond address size
 • Operate only on "index registers"

• Floating point instructions
 • Ideally an abstraction of real arithmetic
 • Sometimes not commutative or associative!

Orthogonality horrors

• Registers not treated alike
• Branching
 • Long and short branches
 • Displacement addressing may be unique to branches
• Addressing mode dependent operations
 • Sign-extension (not) done depending on destination

 • Even-oddness ! long/short multiplication
• Different instructions for reg-reg, mem-mem, reg-mem, etc.

Composability

• Conversion
 • Relational operators
 • Relationals only affect control flow
 • HLL may allow assignment of Boolean value
 • Type coercion
 • Mismatch
 • Languages view type as property of data
 • Machines view type as property of operators
• Register allocation
 • Even - oddness of register use

 • A " B # C: Can be done "on the fly"

 • A " (B + D) # C: Must examine whole expression
 • Load / store motion
 • Move frequently used variables into registers
 • Eliminates load and store operations
 • Even - oddness may force analysis over basic block
 • Accumulator versus index register

One versus all (example)

• AND NOT provided instead of logical AND
• AND is commutative and associative
• AND NOT is neither
• Tedious analysis needed to:
 • Determine which operand to complement
 • Apply DeMorgan's laws to obtain optimal code

Primitives versus solutions

• "Semantic clash" between languages
 • Treatment of global data (e.g. COMMON, etc.)
 • Procedure parameter passing
 • FOR statements
 • Type conversions
• Machine design dilemma
 • Built-ins for one language cannot support others
 • Support for all will fail due to inefficiency
• Horrors
 • Support for only some parameter passing mechanisms
 • Certain loop models of initialization, test, recomputation
 • Address modes for certain stack frame or array layout
 • Case instructions that do (not) check boundary conditions
 • Case instructions that do (not) assume static bounds
 • Data structures different from common implementation
 • Elaborate string manipulation
• Complex instructions are usually composed of primitives

Addressing
･ HLL permit arbitrary composition of:
 ･ Scalars
 ･ Arrays
 ･ Records
 ･ Pointers
･ References can be quite complex
･ Compiler must be able to handle the general case
･ Further complications are due to:
 ･ Block structure
 ･ Recursive procedures
 ･ "By reference" parameter passing
･ May require use of:
 ･ Indexing through a "display"
 ･ "Dope" (descriptor) information
 ･ Several levels of indirection
･ Access is a path walking algorithm involving:
 ･ Indirection (following a pointer)
 ･ Computing a record element displacement
 ･ Indexing (by an array subscript)
 ･ Constraint checks on subscripts and nil pointers
･ Machines tend to support an ad hoc collection of

modes
 ･ No indirection at all!
 ･ Indexing/indirection in a fixed order
 ･ Type constraints on index multiplication
 ･ Limits on the size of displacement offset
･ If more than one mode is available, choice is difficult

Environments

• Common language features
 • Recursive procedure invocation
 • Dynamic storage allocation
 • Process synchronization and communication
• Neglected areas
 • Uninitialized variables
 • Read before write
 • Set bad parity on uninitialized variables
 • Constraint checks
 • Subscript range checking
 • Case bounds checking
 • Exceptions
 • ON condition
 • Often violates hardware support for procedures
 • Debugging support
 • Force user to debug at low level (unpalatable)
 • Special debug mode (not much better)

Stacks

• Stack machines pose the same optimization problems
• Expression reordering
 • Reduces number of registers used
 • Also reduces stack depth
• Recompute or store is a difficult decision
 • Always advantageous on register machine to store
 • Must be offset by uses of value on stack

