
Topics in computer architecture

Data-driven nets

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1990-2013 Paul J. Drongowski

DDN cell types

• Operator cell
• Conjunctive firing rule - token at all inputs
• Purely functional behavior - no side-effects
• Cell is labelled with function to be computed

• Synch (synchronizer) cell
• Conjunctive firing rule - all inputs satisfied
• Passes each input to corresponding output
• One or more inputs (outputs)

• Distribute cell
• Two inputs: control and input-value
• Conjunctive firing rule
• Copies input to selected output
• Numbered from 0 to N-1; left to right

• Select cell
• Firing set: control input and selected input
• Value of selected input is copied to output
• Inputs numbered from 0 to N-1; left to right

• Arbiter cell
• Firing rule: a value at any input
• Input value to is sent to output
• Index of selected input is output from control
• Inputs numbered from 0 to N-1; left to right

• Gate cell
• Initial state: Fire and copy value on gate input
• Condition true: Fire and copy feedback value
• Condition false
 • Value at gate input: Fire and copy gate input
 • Empty gate input: return to initial state

Arithmetic, relational, logical operators
･ﾊArithmetic
 NEG - negative
 ABS - absolute value
 ADD - addition
 SUB - subtraction
 MUL - multiply (extension)
 DIV - divide (extension)
 MOD - modulus (extension)
 MIN - minimum of two values
 MAX - maximum of two values
 10^N - Shift left (multiply by power of 10)
･ Relational
 LT - less than
 GT - greater than
 LE - less than or equal to
 GE - greater than or equal to
 EQ - equal to
 NE - not equal to
･ Boolean (logical)
 NOT - logical complement of Boolean value
 AND - logical AND (extension)
 OR - logical OR (extension)

･ Notes
 ･ Boolean values are 0 (false) and 1 (true)
 ･ Operators can be applied to "vectors" if conformable
 ･ "Vector" examples
 ･ NEG: ((-5)(-10)(20))→ ((5)(10)(-20))
 ･ ADD: ((1)(2)),((3)(4)) → ((4)(6))
 ･ MAX: ((1)(9)),((8)(2)) →゙ ((8)(9))
 ･ NOT: ((1)(0)(0)(1)) →゙ ((0)(1)(1)(0))
 ･ LT: ((1)(4)),((3)(2)) →゙ ((1)(0))
 ･ Similar to APL nested arrays

The Storage Model (TSM)
• Generalized tree structure discipline
• Alphabet
 • Digits = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
 • Punctuation = { ., -, •, (,) }
• TSM structure or field
 • All data between matching parentheses
 • Parentheses are special characters, not data
 • First character after (
 • is a data character, then the field is a record
 • is a), then the field is empty (null)
 • is a (, then the field is a file and has structure
 • Fields within a file can be records, files or a mixture
 • Fields within a file can be indexed
 • The first index selects a field within the file
 • If that field is a file, another index may select in it
 • Records may also be indexed (by character)
 • Example
 • (((A)((D)(E))(B))((F)(G))(C)(H)))

 • ((1)) ! ((A)((D)(E))(B))

 • ((1)(2)) ! ((D)(E))

 • ((1)(2)(1)) ! (D)

Execution errors
• Kinds of execution errors
 • Input sent to nonexistent cell
 • Input sent to a nonexistent input of an existing cell
 • Illegal data item (e.g., nonconformable) may be received

• Generate an error token, " (not (), empty)
• All cells propagate error token
• Similar to Backus' "bottom preserving functions"

TSM operators

UP - Removes the outside set of parentheses of input
 • Input must be a file with one field
 • Examples

 • ((1234)) ! (1234)

 • (((34)(12))) ! ((34)(12))

DOWN - Encloses the input in parentheses
 • Examples

 • (1234) ! ((1234))

 • ((3)(2)(2)(5)) ! (((3)(2)(2)(5)))

SIZE - Count fields or characters
 • If input is a file, return number of fields in file
 • If input is a record, return number of characters
 • Examples

 • (345) ! (3)

 • ((98)(47563)) ! (2)

LEVEL - Return true if input has no structure; else false
 • Examples

 • (9) ! (1)

 • ((((1)))) ! (0)

IREAD - Index TSM structure
 • Left input is a TSM structure to be indexed
 • Right input is a TSM access vector
 • Indices must be greater than or equal to 1
 • Example
 • Left: ((1)((2)((1)(1))))
 • Right: ((2)(2))
 • Result: ((1)(1))

More TSM operators

CAT - Catenates two input structures
 • Takes left and right TSM inputs
 • Removes the parentheses from each
 • It is illegal to catenate a record and a file
 • Examples

 • (12), (34) ! (1234)

 • ((1)(2)), ((3)(4)) ! ((1)(2)(3)(4))

DECAT - Split a TSM structure into two parts
 • Left input is a TSM structure
 • Right input is an integer (N)
 • Right result is the last N fields
 • Left result is the first N fields
 • Examples

 • (123456789), (3) ! (123456), (789)

 • ((1)(2)(3)), (2) ! ((1)(2)), ((3))

IWRT - Indexed write
 • Left input is a TSM structure to be modified
 • Middle input is an access vector
 • Right input is TSM structure to replace accessed field
 • Examples

 • ((1)(2)(3)), ((2)), (7) !
((1)(7)(3))

 • (1234), (3), (6) ! (1264)

Process (subnet)

SUB

MULMUL

SUB

X1 Y1 Y2X2

Distance

ADD

SQRT

• Synchronized inputs

• Synchronized outputs

• (X1 - X2), (Y1 - Y2)

• Take square of differences

• Form sum of the squares

• Square root of sum of squares

• All arguments must be present before execution
• Results are not returned until al results are available

Predicate

Body

Loop-output

Loop-input

Control

Loop form

• Gate cell chooses between:
 • Initial loop input value
 • Intermediate value

• Predicate forms condition for:
 • Gate control
 • Distribute cell

• Distribute
 • Produces loop output
 • Initiates body computation
• Body produces next loop value

• One gate cell is required per loop input
• A body is required for each intermediate value
• Finally, a distribute cell is needed for each loop output
• The predicate can be copied to all gate and distribute cells
• Thus, a practical loop can and will look complicated!
• This loop terminates when the predicate is false (zero)

Case form

Input-1 Input-2

Output-1

Body-0 Body-1 Body-2

Distribute

Select

Distribute

Select

Output-2

Selector

• Distribute cells route data inputs to case body nets
• Select cells choose results from a particular case
• Example has:
 • One case selection value (copied four times!)
 • Two input values
 • Three case bodies
 • Two output values
• Case should have "out of bounds" check

Share form

Arbiter

Select

Body

Left-1 Left-2 Right-1 Right-2

L-out-1 L-out-2 R-out-1 R-out-2

• Arbiter selects first caller

• Results are routed to caller

• Expand by adding select cells

• Used when a body is to be shared by several callers
• Body is executed sequentially
• Example has two inputs and two outputs per caller
• More callers will require:
 • Additional arbiter and select inputs
 • More outputs on the distribute cells at bottom
• This form assumes that inputs arrive in synchronized sets

Example: X - 2 × X + 3 2

MULMUL

SUB

ADD

2

3

MULMUL

SUB

ADD

2

3

MULMUL

SUB

ADD

2

3

MULMUL

SUB

ADD

2

3

5

3
4

5
4

3

5

4 5

9 6 16

3

8

･ Constant values are regenerated as needed
･ Execution is determinate
 ･ Arcs maintain first in - first out order
 ･ Multiple "fan in" to an input is disallowed
 ･ Cells are purely functional
･ No arcs between MUL cells
 ･ No data dependency
 ･ Example of horizontal or spatial concurrency
･ Arcs provide FIFO storage
 ･ Queue of values
 ･ Example of temporal concurrency or

