4

TO

GGLE

I
4

—e&| SELECT

true

false

—*Ri

M ™ CALL

T

ARBITER

-1 R2

G1
D1 e

D2je—
G2}~

application

XOR provides the OR
function for events.

Muller C-elements
provide the AND
function for events.

TOGGLE steers events
to its outputs alternately
starting with the dot.

SELECT steers events
according to the Boolean
value of its diamond input.

CALL remembers which
client, R1 or R2, called the
procedure, R, and after the
procedure is done, D,
returns a matching done
event on D1 or D2.

ARBITER grants service,

G1 or G2, to only one input
request, R1 or R2, at a time,
delaying subsequent grants
until after the matching

done event, D1 or D2.

FIGURE 9. Logic Modules for Events

Modules of 10 to 100 transistors can perform useful logical
functions on events. The modules whose symbols are shown
provide the functions indicated. Note the similarity of these
functions to the basic structures used in programming. One
might think that the arbiter would require 8 terminals, since
the request signals at the left seem to lack corresponding
acknowledge signals. Either the grant or the done signals are
used to acknowledge incoming requests, depending on the

FIGURE 11. Circuit for the Switch Symbol

The double-throw switch symbol at the right of this drawing
represents the transistor circuit shown inside the dotted line.
When the control wire, C, is low, the output terminal, Z, is
controlled by the Y input, as shown. When the control wire is
high, the switch flips to the X input. The output of this form of
switch is controlled by its selected input, but inverted in value.
Other implementations of such a switch using pass transistors
are also possible.

PN

D(out)

9
=)

i
Q

-~ 02

FIGURE 13. Conventional D Flip-Flop

A conventional D flip flop is controlled by non-overlapping
clock signals ¢1 and ¢2 illustrated in Figure 5. Compare this
circuit to the event-controlled storage element of Figure 12.

\
'
|
N
|
]

-- Pass

.

—

A-- Capture

|

Out

\-- Capture --Pass

FIGURE 12. Event-Controlled Storage Elements

An event-controlled storage element responds to events on its
two control wires, called “capture” and “pass” in this drawing.
Two different configurations are shown. The form on the right,
with five inverters, is slightly faster than the form on the left,
with only three inverters, because its feedback paths contain
only one switch rather than two. After master clear the
switches will be in the position shown, making a direct connec-
tion without loops between input and output, a state in which

the storage element is said to be transparent. Storage ele-
ments of either type are formed into registers just as are flip
flops by connecting their capture and pass control wires in
parallel. The register symbol includes control outputs, Cd and
Pd, which are amplified, and thus necessarily delayed, versions
of the control input signals, C and P. Cd and Pd, named for
“capture done” and “pass done,” deliver output events after
the register has done its action.

I
|
i
g |
] P
IN<1>— o
i YT —
! o«
; Cd Pd
X I
1
i
IN<Z2> —
TOGGLE
Cd «----- L--—-» pd

FIGURE 14. Latches Used as an Event-Controlled Storage
Register

An event-controlled register made from ordinary latches re-
quires an XOR module and a TOGGLE module for control. A
2-bit register is shown; dashed wires carry events. Capture
and pass events arrive alternately at the separate control
inputs, C and P, but the XOR merges them onto one wire. At
the XOR output, each capture event becomes a rising transi-
tion in the latch control wire and flips the switches, causing
the latches to capture data. Each pass event becomes a
falling transition in the latch control wire and flips the
switches back to the position shown, making the latches
transparent again. The TOGGLE module separates the cap-
ture and pass events back into two separate output paths,
Cd and Pd, after the register has done its action. This circuit
is slower than the event-controlled register of Figure 12 and
delays its output events, Cd and Pd, accordingly, but except
for delay provides exactly the same function.

R(in) A(). - R A@3) R(out)
o I S T W p-EaD---> FIGURE 10. Control Circuit for a Micropipeline

With data paths omitted, the control circuit for a micropipe-
line is a string of Muller C-elements. In this figure one of four
identical stages is shaded and alternate stages have been
drawn upside down. At the input and output to each stage
there are request, R(n), and acknowledge, A(n), signals. In-
verters in the acknowledge paths are represented by “bub-
bles” at one input of each Muller C-element. The delays
shown explicitly here may not be required for simple data
paths. Notice that each loop in this circuit contains exactly
. . one inversion, the bubble, and is therefore an oscillator. The
.-u--.-j-!l T o M T e < Muller C-elements retard the oscillation in each loop to coor-

|
'
|
'
)
)
!
’
|

- - - -

between stages conforms to the two-phase bundled data
convention of Figure 4. This drawing suggests the form of an
integrated circuit layout; the control signals pass back and
-E!A woﬂ: across the data path to accommodate transmission
elays.

—-mememefg
- ™o
.

[P
€ -—-— E' ||..~,u.ﬁ.-ll.:;,m.,»:

A(in) R(1) AQ)

A(in 1) A2 R(3 A
(in) (M @) 3) (out) dinate it with the actions of adjacent loops. In this and other
DIRECTION OF DATA _u_.O<<IIIIv figures, dotted wires carry event signals.
i R(out
R(in). _-\“:: @) .-mﬁwv m--EL.--N
N Ty i
! I “ !
G c o e ! FIGURE 15. Micropipeline without Processing
Dca.llu il A 0 R DBcwc A micropipeline without processing has event-controlled reg-
« = “ 1 isters for data path and Muller C-elements for control. Four
— M., n ” stages are shown; one of them is shaded. Each interface
—— - —- IQ‘.I-‘ ~ ~«)
| |
|
i
|

A(1) i > R(2 A3 R(out)
ML R L A il
P i -,’(tz, Ath ' ! ;
Vo Y AT b |
b LR b i
R p L ‘g
C. Pl Y [ca G G [P
oiin) | o [4fa) i (6] [1A
= w g i § QS
e [; e [e [
S A e N T B
ca Pl \J 2 e d* Pl N/ € pa]) \
vl i v o T
{ ISR | | -
| | ||
| ’ ,/ IE. :, | i
PR CIIVY Vel S I PR S TV) St N 0 R S —<
A(in) R(1) wafs i R(3) A(out)

FIGURE 17. Micropipeline with Processing
A micropipeline with processing uses combinatorial logic be-
tween the event-controlled registers of Figure 15. Four
stages are shown; one of them is shaded. The delay ele-
ments in the request event path model the processing logic
delay to preserve the bundling convention. All interfaces be-
tween stages, taken either before or after the logic circuits,
conform to the two-phase bundled data convention of Fig-
ure 4. The capture done, Cd, output of each register is
shown connected to the pass, P, input of its predecessor, a
more conservative connection than was used in Figure 15;
either connection works.

R(in) A(out)

1 TR2
ARBITER -
101 D2 G2

t

1t
4
EMPTY? |o-E F FULL?
no - yes yes no

=y C)

VARV
[77]
v
[«
E .
Put data —_ " Take data
into memory & & out of memory
" W
a [N
NEEETDHIHEEED
A(in) ik R(out)
< o 0 »
FULL? F||E EMPTY?
no yes yes no

LY

FIGURE 21, Ring-Buffer FIFO Control Logic

The control logic for a ring-buffer FIFO can be composed
from the event logic modules shown in Figure 9. Except for
the test values, all wires shown here carry event signals; the
data path, the address pointers and the memory are not
shown. In each of the four SELECT modules | have written
the name of its test; the wires labeled “E" and “F” carry the
required Boolean values. The functions described in the four
lozenges include memory access and incrementing the read
and write pointers, RP and WP. Although this figure looks
like a block diagram, it is actually a circuit ready for direct
implementation. It has been proven [5] than an external ob-
server cannot distinguish this ring-buffer FIFO control circuit
from the micropipeline control circuit of Figure 10.

