
l> XOR provides the OR
function for events.

Muller C-elements
provide the AND
function for events.

TOGGLE steers events
to its outputs alternately
starting with the dot.

SELECT steers events
according to the Boolean
value of its diamond input.

CALL remembers which
client, R1 or R2, called the
procedure, R, and after the
procedure is done, D,
returns a matching done
event on D1 or D2.

ARBITER grants service,
G1 or G2, to only one input
request, R1 or R2, at a time,
delaying subsequent grants
until after the matching
done event, D1 or D2.

FIGURE 9. Logic Modules for Events
Modules of '10 to 100 transistors can perform useful logical
functions on evenls. The modules whose symbols are shown
provide the functions indicated. Note the similarity of these
functions to the basic structures used in programming, One
might think that the arbiter would require B terminals, since
the request signals at the left seem to lack corresponding
acknowledge signals. Either the grant or the done signals are
used to acknowledge incoming requests, depending on the
application.

FIGURE 11. Circuit for the Switch Symbol

The double-throw switch symbol at the right of this drawing
represents the transistor circuit shown inside the dotted line.
When the control wire, C, is low, the output terminal, Z, is
controlled by the Y input, as shown. when the control wire is
high, the switch flips to the X input. The output of this form of
switch is controlled by its selected input, but inverted in value.
other implementations of such a switch using pass transistors
are also possible.

D(in) D(out)

FIGURE 13. Conventional D Flip-Flop

A conventional D flip flop is controlled by non-overlapping
clock signals d1 and 42 illustrated in Figure 5. Compare this
circuit to the event-controlled storage element of Figure 12.

I
I

I
I

I
I

a1 ,__ a2

oc

I

c)
!
c
o

. t--
I

10

(t
@

I

o)

o

I

I

T
0)
@
U'

ag33gr33: R'< = = d I g

+f,3Cr*se
H13=?dda
6FaEF;*i3='d?Fi-6F
O + 4 O -.16'n o.q.td*?EE,
6iiii-q$F6q O. E o = e ^i,E:=lE-=dgb
EAFHflISq
ordlo99o.oa=d'6=9E=
e';3-i351$:!
*5 s F 3 IqB fi
fr+rfE=3:13 F
o P + d:3 q'' # tI
:i-e{as* g
+Y ao - 5 9 665 P.r-6'j- o-'g J Fed

a
g

trE 3.3Es=d f ?
-n-hrY-;:ais--,n)gE
g 5 8 e qs a $ A6o5=Jqli $ 5 r e'5 +E I
ild'=s,R d de I
q 3Eag:Ff d "'
6 r(D I-{-'a

-\Y
+

;E'"1-&-3 q 3 ;
oro*D*^=P.*a;a[€:33-ep=aqe3

'dddo=.o
o'pa Ai 6t
q sfi sE,eg
€ ee 3 r fr e
F.eaBiiEt-o)Eo-O

*HEi5H€
F3$ Hs sFa'9a t)

o

lN<1>

ouT<'l>

ouT<2>

lN<2>

FIGURE 14. Latches Used as an Evenl-Controlled Storage

Register

An event-controlled register made from ordinary latches re-
quires an XOR module and a TOGGLE module for control. A
2-bit register is shown; dashed wires carry events. Capture
and pass events arrive alternately at the separate control
inputs, C and P, but the XOR merges them onto one wire. At
the XOR output, each capture event becomes a rising transi-
tion in the latch control wire and flips the switches, causing
the latches to capture data. Each pass event becomes a

falling transition in the latch control wire and flips the
switches back to the position shown, making the latches
transparent again. The TOGGLE module separates the cap-
ture and pass events back into two separate output paths,
Cd and Pd, after the register has done its action. This circuit
is slower than the event-controlled register of Figure 12 and
delays its output events, Cd and Pd, accordingly, but except
for delay provides exactly the same function.

------l i------tr4t/\-/Y
I

vn
r='
JG

o
fl
mo{
oz
o
'Tl

Cf

.Tt

o
€

I
,a3=9E3SqtrSBt=
eq=:*;$l5rril
sl$AFg:13EKss E
E = i _5 i6 o: ; {e S€ A I i?f 9=3€E AEa:a{ ir'

A[;pt$aai54Ei F

;33gut 3uisnni s

ie" B a + F lB ii iag F

'i;l1eqfitgE;1*il s e $.5 g sI E q g : E

*Eic$eciEqt€
F

xTo

Q(: REG. ;

o
-l5'

I

A
tpt
[ijn
1C
YJ

>----.-

o
o
G

s0-1-89R4>
e- +E 2 ?,H I

=t
n

-t
3.

g I a€ 'r I3 ft 3 e'E E
F -e iT e g e il
$€E q; ri F

xirS6aE- ='-': r= o I{ 3lfai;Eis+;EoE EE+?i;?s il
i6e g x er 3

$fiE3$1iil
d [;qqaa,E
s ea$aF*

D -r(O
f

A(3) J(out)i------".-1g.Ellt{}-->

D(in) D(out)

t---

A(out)

FIGURE 17. Micropiperine with processing
A micropipefine with processing uses combinatoriar rogic be-
tween the event-controtfed registers of Figure 15. Foui
stages are shown; one of them is shadeO. fne delay ele-
ments in the request event path model the processing logic
defay to preserve the bundling convention. Alf interfaces be-
tween stages, taken either before or after the fogic circuits,
conform to the two-phase bundled data convention of Fig-
ure 4. The capture done, cd, output of each register is
shown connected to the pass, p, input of its prrdrr.ssor, a
more conservative connection than was used in Figure 15;
either connection works.

2)

R(in) A(out)

Rl F2

ARBITER
cr Dl 02 G2

.FULL?
yes no

o
N
3A

oo
E

o-(l
tl

(L

=JI

tiJ

E.

Take data
out of memory(L

E
tl

I

=JI
tr

R(outA(in)

FIGURE 21, Ring'Buffer F|FO Control Logic

The control logic for a ring-buffer FIFO can be composed

from the event logic modules shown in Figure 9. Except for

the test values, all wires shown here carry event signals; the

data path, the address pointers and the memory are not

shown. ln each of the four SELECT modules I have written

the name of its test; the wires labeled "E" and "F" carry the

required Boolean values. The functions described in the four

lozenges include memory access and incrementing the read

and write pointers, RP and WP. Although this figure looks

fike a block diagram, it is actually a circuit ready for direct

implementation. lt has been proven [5] than an external ob-

server cannot distinguish this ring-butfer FIFO control circuit

from the micropipeline control circuit of Figure 10'

