
Topics in computer architecture

Reduced instruction set computers

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1990-2013 Paul J. Drongowski

Architecture in the 1970's

• Technology
 • Microprogrammed implementation style
 • Control memory was 10 times faster than primary
 • 8192 bits of ROM occupied space of 8 register bits

• Arguments for a richer instruction set
 • Simplify compilers
 • Register oriented compilers were hard to build
 • Use stack or
 • Memory to memory operations instead
 • Alleviate software crisis
 • Move function to hardware
 • Machine instructions to resemble HLL statements
 • Close "semantic gap"
 • Improve architectural quality
 • Measure "quality" as opposed to execution speed
 • Architectural metrics
 • Program size
 • Number of bits per instruction
 • Bits of data fetched from memory

• Memory efficiency was a dominating concern
 • Slow and expensive core magnetic core memory
 • Belief: Execution speed proportional to program size
 • Code improvement
 • Find long sequence of instructions and
 • Replace with a single instruction

Design principles (1970's)

• Cheap, dense ROM ! Inexpensive additions to
ISA
• Microinstructions were faster than ISA instructions

 ! Move software function to microcode

 ! Faster, more reliable functions
• Execution speed was proportional to program size

 ! Smaller programs

 ! Faster computers
• Register oriented machines were passe

 ! Stacks or memory-to-memory architectures

 ! Complex instructions for procedure linkage

Technological changes

• Semiconductor memory
 • Speed would be comparable to CPU
 • Replace core memory as density increased
• Bloated microcode
 • 400,000 bits became typical
 • Errors could not be removed
 • ROM was replaced by RAM (writeable control store)
• Cache memory
 • Small, fast buffer between CPU and primary memory
 • Substantially improved execution speed
• Compilers used only a subset of the ISA
 • Could not always use complex instructions
 • Could use simpler instructions due to better analysis

Writeable control store
･ Could not run faster than one uinstruction per clock
･ 3 to 4 microcycles per instruction on average
･ Migrate application into microcode
･ Provide a writeable control store for application microcode
･ Problems
 ･ Microcode is tedious to write and debug
 ･ Restart on virtual memory fault
 ･ Limited control store size ゙ time lost optimizing by

hand

Examples
Machine
Year
Instructions
Control memory
Instruction size
Technology
Cache size
Execution model

IBM 370/168
1973

208
420 Kbit

16-48
ECL MSI

64 Kbit
reg-mem

mem-mem
reg-reg

VAX-11/780
1978

303
480 Kbit

16-456
TTL MSI

64 Kbit
reg-mem

mem-mem
reg-reg

iAPX-432
1982

222
64 Kbit

6-321
nMOS VLSI

0
stack

mem-mem

RISC origins

• Instructions should be as fast as microinstructions
• Program or compile to simple operations
• Exploit higher speed of caches and semiconductor memory

Design principles

• Keep function simple
 • Short cycle time
 • Small number of cycles per function
• Execute simple instructions as fast as microinstructions
 • Cache uses same memory technology as WCS
 • Execution speed should be the same
• Make hardware primitives available in machine language
 • Provide same hardware functionality as microengine
 • Use runtime library instead of complex instruction
• Simple decode and pipelined execution
 • More important than program size

 • Simple decode ! fast cycle time
 • Pipelining

 ! Careful partition of function into phases

 ! Each phase is shorter than total instruction time
• Remove work at compile time
 • Keep operands in registers
 • Use register to register instructions
 • Operands are not discarded as in mem-to-mem ISA

RISC traits

• Register to register operations
• LOAD and STORE memory access
 • Simplifies processor design
 • VM fault handling is localized
• Reduced operations
 • Register to register operations take one cycle
 • Hardwired control (microcode unnecessary)
 • Execute multiple cycle instructions in coprocessor
• Reduced addressing modes
 • Two modes: indexed and PC-relative
 • Synthesize other more complicated modes
• Simple instruction formats
 • Instructions do not cross word boundaries
 • Little or no decode time
 • Instructions do not fall across page boundaries
• Delayed (effect) branches
 • Do not take effect until after the following
instruction
 • Eliminates pipeline "bubbles" due to a flush
 • Compiler handles arrangement of code

Early examples (January 1985)

Machine
Year
Instructions
CS size
Instruction size
Technology
Execution model

IBM 801
1980
120
0
32

ECL MSI
reg-reg

RISC I
1982
39
0
32

nMOS VLSI
reg-reg

MIPS
1983
55
0
32

nMOS VLSI
reg-reg

RISC approaches

• Compiler technology vs. register windows
 • IBM 801 and Stanford MIPS
 • Large general register set
 • Graph coloring algorithm for register allocation
 • Berkeley RISC
 • Register windows
 • Based on observations of program behavior
 • Register windows are bigger and slower
 • Drawbacks of compiler approach
 • Compiler is twice as slow
 • Penalty for register save / restore on procedure call
 • Expand some procedures in-line
 • Frequency of LOAD and STORE
 • 801 - 30 percent (32 registers)
 • MIPS - 35 percent (16 registers)
 • RISC - 15 percent (32 registers per window)

• Memory access
 • Access requires minimum of two cycles
 • One cycle to compute address
 • Second cycle to actual read from memory
 • RISC - Use two cycles and shim the pipe
 • 801 and MIPS - Delayed LOAD
 • Two memory ports - one data, one instruction
 • Data not available until third cycle
 • Second instruction cannot use memory data
 • Data dependency hazard
 • Slot can be filled 90 % of the time

• Pipelines
 • 801 - Four stage pipeline
 • RISC - Three stage pipeline
 • 801 and RISC - Value forwarding
 • MIPS
 • Microprocessor without Interlocked Pipelined Stages
 • Compiler removes resource conflicts

Hidden RISC

• VAX architecture study
 • VLSI VAX - nine custom chips
 • Observation
 • 20 % of instructions take
 • 60 % of the microcode, but are
 • 0.2 % of all instructions executed
 • MicroVAX 32
 • Subset of the VAX ISA
 • Complex instructions in software
 • One chip plus optional FP chip
 • VLSI VAX was only 20 % faster
 • 20 % can be gained by simpler compiler

• IBM 360 model 44
 • Subset ISA in hardware
 • Complex instructions in software
 • Better cost/performance than neighbors in family

Source: "Reduced instruction set computers,"
David A. Patterson, CACM, January 1985.

RISC (CPI) goals
･ Minimize cycles per instruction (CPI)
 ･ Simple instructions
 ･ Large, low miss rate caches
 ･ Load / store architecture
 ･ Pipelining
 ･ Minimize loss for incorrectly predicted branch
 ･ Delayed branch
 ･ 20 % of instructions are control transfers
 ･ 10 % are conditional control transfers

･ Minimize number of instructions executed
 ･ Large general register set
 ･ Reduce occurrence of loads and stores
 ･ Windows to pass procedure arguments / results
 ･ Interprocedural register allocation (IRA)
 ･ Do not modify condition codes on every instruction
 ･ Compiler can more easily rearrange code
 ･ SPARC executes 20 % more instructions than 68000

･ Minimize clock period
 ･ Depends on design of cache and pipeline
 ･ Critical circuit delay ゙ cache access path
 ･ Return cache value in one clock period
 ･ Simple formats speed decoding and dependency checks

• Time to execute P = I ! C !

Measures

• P: Large compute-bound program
• CPI: Cycles per instruction
• I : Number of instructions executed by P
 • Depends on benchmark program
 • Efficiency (quality) of the instruction set
 • Quality of the compiler
 • Number and organization of registers
• C : Average number of CPI executed by program P
 • Depends on benchmark program and compiler
 • Microarchitecture
 • Size and speed of cache/memory system
 • Sensitive to cache miss rate
 • More misses means more lost memory wait cycles
 • Goal: Execute most frequent instructions in the
 least number of cycles
• T: Time per cycle (reciprocal of clock frequency F)
 • Depends on chip technology
 • Projected cost
 • Development time and risk

P

P

P P

• MIPS rate =
1

C ! P

P

• Time to execute P =
MIPS

P

I
P

Characterization of programs

• Berkeley characterization study (Patterson & Sequin, 1982)
• Four Pascal programs
 • Pascal compiler
 • Macro expansion phase of DA system
 •!Pascal prettyprinter
 • File comparison program
• Four C language programs
 • Portable C compiler (VAX)
 • VLSI mask layout program
 • Text formatter
 • Sorting program

Dynamic frequency
of operands

Integer constants
Scalars
Arrays/structures

Pascal & C

20 ± 7 %
55 ± 11%
25 ± 14 %

Remarks

> 80 % refer to local variables
> 90 % refer to global variables

Dynamic frequency
of statement types

Assignment
If
Call/return
With
Loop
Case

Pascal

45 ± 8 %
29 ± 8 %
15 ± 1 %
5 ± 5 %
5 ± 0 %
1 ± 1 %

C

38 ± 15 %
43 ± 17 %
12 ± 5 %
3 ± 1 %
3 ± 4 %

< 1 ± 1 %

Characterization (2)
• Observations
 • Loops were counted once
 • Statements within loop counted once per execution
 • Table below indicates amount of execution time
 • Call/return includes save/restore, parameter overhead
 • For loop statement, count includes all instructions
 executed during each iteration

• More observations
 • 80% of all scalar references were to local variables
 • 90% of array/structure references were to globals
 • Call/return are the most time-consuming statements
 • "RISC architectures for VLSI," Katevenis, 1985
 • Programs are organized into procedures
 • Calls are frequent and costly in time
 • Procedures have few arguments and local variables
 • Locals are usually scalars and heavily used
 • Nesting depth fluctuates within narrow ranges
 • "Empirical ..." Lunde, CACM, March 1977
 • 10 regs sufficient 90% of time for 41 programs studied
 • 10 regs sufficient 98% for 36 of the 41 programs
 • Size, complexity, efficiency did not imply many regs
 • "Implications ..." Tanenbaum, CACM, March 1978
 • Assignments with 1 RH side term: 75%S, 64%D
 • Assignments with 2 RH side terms: 15%S, 20%D
 • 98%D of procedures had less than 6 arguments
 • 92%S of procedures has less than 6 scalar variables

Weighted dynamic
frequency of
statement types

Call/return
Loop
Assignment
If

Machine instructions Memory references

Pascal

31 ± 3 %
42 ± 3 %
13 ± 2 %
11 ± 3 %

C

33 ± 14 %
32 ± 6 %
13 ± 5 %
21 ± 8 %

Pascal

44 ± 4 %
33 ± 2 %
14 ± 2 %
7 ± 2 %

C

45 ± 19 %
26 ± 5 %
15 ± 6 %
13 ± 5 %

