
The SP.4 stack computer

Paul J. Drongowski (Instructor)
Computer Engineering and Science
Case Western Reserve University

ECMP 424 Advanced Computer Architecture
Spring 1990

Introduction.

The SP.4 is a stack machine loosely based upon the Burroughs B5000 in-
struction set architecture (ISA.) The SP.4 uses a push-down stack for com-
putation and subroutine calls. An SP.4 program is really a reverse Polish
postfix string in which operands are pushed onto the stack and manipulated
by operators. Memory references are made through a Program Reference
Table (PRT) which maps a “virtual” operand name to its physical location
in primary memory.

Memory.

SP.4 memory words are thirty-four (34) bits long. The high order two bits are
“tag bits” that specify the type of data contained within the low order thirty-
two bits. Primary memory has 65,536 thirty-four bit words and contains the
Program Reference Table, the program itself and any data objects.

Registers.

The SP.4 has three main kinds of register objects (Table 1.) The instruction
pointer, IP, selects the next program (instruction) word for execution. The
Stack has an unspecified depth and operates in a last in-first out manner.
The Stack contains tagged data items necessitating a 34-bit word. The PRT
register contains the base address of the Program Reference Table in primary
memory. The PRT register permits the easy relocation of the table.

Instructions.

Program word types (or instructions) are given in Table 2. Figure 1 provides
additional detail about the bit fields within a program word by type. The

1



Name Size Purpose
IP 16 bits Instruction pointer

Stack ? 34-bit words Push-down stack
PRT 16 bits Pointer to the Program Reference Table

Table 1: SP.4 register objects.

Tag Type Purpose
00 Operator Perform specified stack operation
01 Literal Push constant (literal) on stack
10 Operand call Push operand on the stack
11 Descriptor call Push descriptor (address) on the stack

Table 2: Program word (instruction) types.

Operator type causes a stack operation to be performed. The operation
is specified in the low order five bits of the word. Stack operations are
summarized in Table 3. The number of operations was kept low to reduce
the overall complexity of the SP.4 implementation. Many more arithmetic
and logical operations could be added to the operation set and you should
feel free to do so (within reason.)

The Literal program word pushes a thirty-two bit constant onto the stack.
The tag bits are set to zero indicating an operand, or “pure value,” item.
The SetTag operator can be used to set the tag bits of the top item on the
stack.

The Operand call and Descriptor call program words bring operands and
descriptors to the stack. These actions obtain an operand or descriptor di-
rectly, indirectly, from an array and by computation. The low order sixteen
bits of the program word is an index into the Program Reference Table (Fig-
ure 2.) The entry at that position in the PRT is a tagged word and is one
of four PRT word types (Table 4.)

Figure 3 depicts the format of the four call word types. Since there are
four different methods of bringing two different object types to the stack,

2



Operation Op code Behavior
Reset 0 Reset stack to its empty state
Duplicate 1 Duplicate the top items
Swap 2 Interchange top two items
Load PRT 3 Pop top item (address) into the PRT register
Pop 4 Pop top item using descriptor (second item)
Add 5 Add top two item and leave result on stack
Subtract 6 Subtract top from second item; result on stack
Multiply 7 Multiply top two items; result on top of stack
Divide 8 Divide second item by top item; result on top
Branch 9 Pop and add top item to IP register
SkipOn0 10 Pop top item and skip next instruction if zero
Return 11 Return from subroutine; swap and jump
TrapReturn 12 Return from interrupt trap; jump through top
GetInput 13 Read and push value at Input port
PutOutput 14 Copy (write) top stack item to Output port
SetTag 15 Set tag of top item to instruction bits < 6 : 5 >

Table 3: Stack operations.

Figure 1: Program word formats.

3



Figure 2: Indexing into the Program Reference Table.

Tag Type/purpose
00 32-bit operand
01 Address of operand (bits < 15 : 0 >)
10 Array descriptor (bits < 31 : 16 >=Length, bits < 15 : 0 >=Base)
11 Address of subroutine entry (bits < 15 : 0 >)

Table 4: Program Reference Table (PRT) word types.

4



PRT tag Action
00 Push this word (the operand) on the stack
01 Push the operand addressed by this word
10 Push operand addressed by sum of the base and top of stack
11 Call the subroutine at this address

Table 5: Operand call summary.

Figure 3: Call word formats.

there are eight distinct cases to be examined.

Stack operations.

This section contains more detailed information about the behavior of the
stack operations. The SP.4 uses a push-down stack. A stack word is thirty-
four (34) bits – two tag bits plus thirty-two data (address or descriptor)
bits.

The Reset operation sets the stack to its empty state. In other words, all
four stack words are unused and are ready to accept data. The Duplicate
operation pushes a copy of the item at the top of the stack. The top two

5



PRT tag Action
00 Push this word (the operand) on the stack
01 Push this word (an address) on the stack
10 Push this word (an array descriptor)
11 Call the subroutine at this address

Table 6: Descriptor call summary.

Figure 4: Array indexing through the PRT.

6



elements on the stack are interchanged by the Swap operation. These three
operations give the programmer a small, but useful set of stack manipulation
instructions.

Values are ordinarily pushed onto the stack through the literal, operand
call and descriptor call program words. The Pop operation removes and
transfers the top of the stack to primary memory. The top item is the value
to be written to memory and the second item on the stack is an address or
descriptor which specifies the destination memory address. Both values are
removed from the stack as a side-effect of the Pop operation. This scheme is
compatible with the reverse Polish postfix form of an SP.4 program.

The Add and Subtract operations remove the top two items, arithmeti-
cally combine them, and leave the sum and difference (respectively) on the
stack. In the case of Subtract, the topmost item is subtracted from the
second item. Multiply and Divide are similar and do the obvious things.

SP.4 programs do not contain explicit physical memory addresses. This
permits the relocation of data blocks in memory, including the Program
Reference Table. To make subroutines and other program segments relo-
catable, we must also avoid the use of explicit subroutine entry and jump
addresses. The Branch operation pops a numeric offset from the top of the
stack and adds this value to the Instruction Pointer register. This permits
a relative branch to a new program address and leaves the code relocatable.
The SkipOn0 operation pops the top item from the stack and will skip the
execution of the next program word (most likely a Branch) if the item is zero.

Subroutines are really functions that compute a simple numeric value
(i.e., an operand) or a descriptor. When a subroutine is called, the return
address is pushed onto the stack. The subroutine then computes its return
value on the stack. It then executes the Return operation which pops both
the return value and return address (the first and second items, respectively.)
The return address is transfered to the Instruction Pointer register and the
return value is pushed, thereby making it the top-most item.

The SP.4 has two input-output ports called, obviously enough, Input and
Output. The GetInput operation reads a data value from the Input port and
pushes it onto the stack. The PutOutput operation writes a copy of the top
item on the stack to the Output port. Both input and output values are
thirty-four bits long (two tag bits plus thirty-two data bits as usual.)

The Load PRT operation pops the top item from the stack and places it
in the PRT register. This operation is essential as the PRT register is not

7



initialized at start-up. A program must also be capable of relocating the
PRT if necessary.

The ability to set the tag bits of a data item is another required function.
The SetTag operation transfers instruction bits < 6 : 5 > to the two tag bits
of the data item on top of the stack.

Start-up initialization.

When the SP.4 is powered-up or reset, the Instruction Pointer is set to zero.
The value of the PRT register is undefined. The state of the stack is also
undefined. They must be initialized explicitly by the application program
(or operating system start-up code.)

Interrupts.

The SP.4 has three interrupt trap conditions. The SP.4 will trap through
location 65,533 if the offset of an operand (array) or descriptor (array) call
is greater than the length of the array as specified by the PRT deescriptor.
The SP.4 will trap through location 65,534 on stack underflow and location
65,535 on stack overflow. Feel free to add any other exception conditions and
traps that you feel are important and essential.

During a trap, the SP.4 pushes the current Instruction Pointer value on
the stack and fetches the address of the trap handler from the appropriate
memory location (i.e., one of locations 65,533, etc.) The TrapReturn opera-
tion pops the return address from the stack and transfers it to the Instruction
Pointer register.

8


