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SPARC compilers
• "Optimizing compilers for SPARC," Steven S. Muchnick,
     SunTechnology, Summer 1988, pg. 64 - 77
• "A global optimizer for Sun FORTRAN, C, and Pascal,"
     V. Ghodssi, et al., Summer 1986 USENIX Conference,
     June 1986, pg. 318 - 334
• Claim
     • Few choices for proper instruction, addressing mode
     • Can easily generate locally optimal code for expressions
     • Lets developers concentrate on
          ! Runtime environment
          ! Global code optimization

Registers

• Register allocation is key resource allocation issue
• Load/store architecture makes good allocation critical
• Three sets of registers are visible at any time
     • Global integer registers
          • Global integer register g0 is special
          • Reads as value zero and ignores write operations
          • Subroutine caller must save global live variables
          • Global var's can be accessed by offset from base
     • Global floating-point registers
          • Function as FP registers (of course!)
          • Also used as caller-saved variables and temporaries
     • Windowed integer registers
          • i0 to i7 ins
          • l0 to l7 locals
          • o0 to o7 outs
          • sp (same as o6) stack pointer
          • fp (same as i6) frame pointer
          • o7 return address



Addressing
• Computational instructions

     • Register ! register " register

     • Register ! immediate " register
• Load and store instructions

     • Register ! register " effective address

     • Register ! immediate " effective address
     • All immediate values are signed 13-bit integers
     • Use g0 to form absolute address
• sethi instruction
     • Used to build 32-bit constants and addresses
     • Loads a 22-bit constant into high end of register
     • The low order 10 bits are set to zeroes
     • Example
          sethi  %hi(loc), %i1
          ld     [%i1+%lo(loc)], %i2
     • Loads word at address loc into i2
     • Most constants are short so sethi is rarily 

Stack model

• Stack frame is addressed relative to fp
     • Parameters beyond the sixth (if any)
     • Parameters that must be memory addressable
     • Address of stack space for a C struct return value
     • Space for (window) overflow in and local registers
     • Automatic variables that must be memory addressable
     • Compiler generated temporaries
     • Saved floating-point registers
• Addressed relative to stack pointer sp
     • Temporaries
     • Outgoing procedure parameters



Procedure call and return
･ Parameter passing
     ･ Move parameters to caller's out registers
     ･ Extra parameters are pushed on stack via sp
     ･ Six registers are available for parameter passing
･ Procedure invocation instructions
     ･ call (one cycle plus delay slot)
          ･ 30-bit PC-relative word displacement
          ･ Stores return address in o7
     ･ jmpl (one cycle plus delay slot)
          ･ Jump and link instruction
          ･ Target is sum of 2 registers or register & immediate
          ･ Store return address in specified register
･ Procedure prologue
     ･ save instruction changes register window
     ･ Caller's outs become procedure's in registers
     ･ New set of locals and outs are provided
     ･ Allocate new stack frame by setting new sp from old 
sp
･ Execution
     ･ Unused ins and locals can be used
･ Postlude (exit sequence)
     ･ Return value is written into one of the in registers
     ･ Value will be available as a caller out register
     ･ restore instruction deallocates register window
     ･ Resets the caller's stack pointer
     ･ jmp to return address
･ Aggregate value return
     ･ C struct cannot be returned in a single register
     ･ Caller must allocate return area on stack
     ･ Address of memory area is passed as a parameter
     ･ Procedure checks if caller is expecting aggregate
     ･ Procedure looks for unimp instruction and block size
     ･ If found and size matches, then return normally
     ･ Else, execute unimp instruction and cause a trap



Multiply and divide
• No multiply, divide or remainder instructions in SPARC
• Must be synthesized from elementary operations
• Multiply step instruction mulscc
• Multiply by constant handled as special case
     • Uses sequence of shifts and adds
     • Will use subtraction if overflow detection is not needed
     • Example: Multiplication by 30
          sll  %o2, 1, %o2    ! 2 * X -> X
          sll  %o2, 4, %o3    ! 16 * X -> Y
          sub  %o3, %o2, %o2  ! y - X -> X
• Runtime leaf routines
     • Used for multiplication of two variables and  all divisions
     • Statistics were gathered on multiply and divide
     • Biased to terminate quickly for common cases
     • Example multiplication statistics
          • 90% have at least one nonnegative operand
          • 90% have one operand of 7 bits or less
          • 99% have one operand at most 9 bits long
          • Thus, choose shorter operand in multiply
          • Average multiply takes less than 6 cycles
          • Average var x var  takes 24 cycles

Tagged data support

• Special add and subtract instructions
• Treat low order two bits as a type tag
• Can (optionally) cause a trap
• taddcc (taddcctv)
     • Add two operands together and store result
     • Set overflow if either tag is non-zero or add overflows
• Example: Common LISP fixnum arithmetic
     • Sum and detection of fixnum performed in one step
     • Cuts add time from six to three



SPARC compiler structure
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Global optimization
• Loop-invariant code motion
• Induction-variable strength reduction
• Common subexpression elimination
• Copy propagation
• Register allocation (modified graph coloring)
• Dead code elimination
• Loop unrolling
• Tail-recursion elimination
• No interprocedural optimization

Peephole optimization

• Eliminates unnecessary jumps
• Eliminates redundant loads and stores
• Deletes unreachable code
• Does loop inversion
• Utilizes machine idioms
• Performs register coalescing
• Handles instruction scheduling
• Does leaf-routine optimization
• Performs cross jumping
• Handles constant propagation

Tail recursion elimination
• Self-recursive procedure
• Only action after it returns to self is to itself return
• Recursion can be transformed to iteration
• Savings due to optimization
     • Reduces window overflows and underflows
     • Saves stack allocation, manipulation and deallocation
• Detect call by reference and suppress elimination
• Number of parameters to C routine can vary (ouch!)



Loop unrolling
• Replace loop body with several copies of the body
• Adjust control code as necessary
• Advantages
     • Especially good for loops with constant bounds
     • Reduces overhead of looping
     • Increases effectiveness of instruction scheduling
• Conditions for unrolling
     • Contain only a single basic block (straight-line code)
     • Generate at most 40 triples of Sun IR code
     • Contain floating-point operations
     • Have simple loop control
• Loop body is unrolled once; more are switch controlled

Instruction scheduling
• Special scheduling cases
     • Delay branch filling (or conditional annulment)
     • Overlap load and instruction without dependency
     • Parallel execution of integer and FP instructions
     • Parallel execution of floating add and multiply
• All cases may interact with one another!
• Effectiveness (Stanford benchmark)
     • Branch filling - utilizes all but 5% of slots
     • Overlap load - 74% scheduled without dependency

In-line expansion
• Replace calls with assembly language code sequence
• Advantages
     • Save execution time
     • Allow further improvement by peephole optimizer

Leaf-routine optimization
• A routine that does not call any other routine
• Must use just a few registers and no local stack frame
• Eliminate save and restore (maybe 15%?)
• Reduces the number of window overflows and underflows


