Topics in computer architecture

SPARC compilers

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1990-2013 Paul J. Drongowski

SPARC compilers

« "Optimizing compilers for SPARC," Steven S. Muchnick,
SunTechnology, Summer 1988, pg. 64 - 77
* "A global optimizer for Sun FORTRAN, C, and Pascal,"
V. Ghodssi, et al., Summer 1986 USENIX Conference,
June 1986, pg. 318 - 334
« Claim
- Few choices for proper instruction, addressing mode
- Can easily generate locally optimal code for expressions
* Lets developers concentrate on
¢ Runtime environment
¢ Global code optimization

Registers

* Register allocation is key resource allocation issue
- Load/store architecture makes good allocation critical
* Three sets of registers are visible at any time
* Global integer registers
- Global integer register g0 is special
* Reads as value zero and ignores write operations
« Subroutine caller must save global live variables
- Global var's can be accessed by offset from base
- Global floating-point registers
 Function as FP registers (of course!)
* Also used as caller-saved variables and temporaries
- Windowed integer registers
«i0to i7 ins
10 to 17 locals
00 to o7 outs
* sp (same as o6) stack pointer
- fp (same as i6) frame pointer
« 07 return address

Addressing

- Computational instructions
* Register A register = reqister

* Register A immediate = register
 Load and store instructions
- Register A register = effective address

 Register A immediate = effective address
- All immediate values are signed 13-bit integers
« Use g0 to form absolute address

* sethi instruction
 Used to build 32-bit constants and addresses
- Loads a 22-bit constant into high end of register
* The low order 10 bits are set to zeroes

- Example
sethi %hi(loc), %il
1d [$1i1+%1lo(loc)], %i2

- Loads word at address loc into 12
- Most constants are short so sethi is rarily

Stack model

- Stack frame is addressed relative to £fp
- Parameters beyond the sixth (if any)
- Parameters that must be memory addressable
- Address of stack space for a C struct return value
« Space for (window) overflow in and local registers
- Automatic variables that must be memory addressable
- Compiler generated temporaries
- Saved floating-point registers
- Addressed relative to stack pointer sp
« Temporaries
 Outgoing procedure parameters

Procedure call and return

- Parameter passing
- Move parameters to caller's out registers
- Extra parameters are pushed on stack via sp
- Six registers are available for parameter passing
- Procedure invocation instructions
- call (one cycle plus delay slot)
- 30-bit PC-relative word displacement
- Stores return address in o7
- jmpl (one cycle plus delay slot)
- Jump and link instruction
- Target is sum of 2 registers or register & immediate
- Store return address in specified register
- Procedure prologue
- save instruction changes register window
- Caller's outs become procedure's in registers
- New set of locals and outs are provided
- Allocate new stack frame by setting new sp from old
Sp
- Execution
- Unused ins and locals can be used
- Postlude (exit sequence)
- Return value is written into one of the in registers
- Value will be available as a caller out register
- restore instruction deallocates register window
 Resets the caller's stack pointer
- jmp to return address
Aggregate value return
- C struct cannot be returned in a single register
- Caller must allocate return area on stack
- Address of memory area is passed as a parameter
+ Procedure checks if caller is expecting aggregate
- Procedure looks for unimp instruction and block size
- If found and size matches, then return normally

- Else, execute unimp instruction and cause a trap

Multiply and divide

« No multiply, divide or remainder instructions in SPARC

« Must be synthesized from elementary operations

« Multiply step instruction mulscc

 Multiply by constant handled as special case
- Uses sequence of shifts and adds
« Will use subtraction if overflow detection is not needed
- Example: Multiplication by 30

sll %o2, 1, %02 1 2 * X => X
sll %02, 4, %03 ! 16 * X -> Y
sub %03, %02, %02 ! yv - X > X

* Runtime leaf routines

 Used for multiplication of two variables and all divisions
- Statistics were gathered on multiply and divide
- Biased to terminate quickly for common cases
- Example multiplication statistics

* 90% have at least one nonnegative operand

* 90% have one operand of 7 bits or less

* 99% have one operand at most 9 bits long

* Thus, choose shorter operand in multiply

* Average multiply takes less than 6 cycles

- Average var x var takes 24 cycles

Tagged data support

- Special add and subtract instructions
- Treat low order two bits as a type tag
- Can (optionally) cause a trap
* taddcc (taddcctv)
- Add two operands together and store result
- Set overflow if either tag is non-zero or add overflows
- Example: Common LISP fixnum arithmetic
- Sum and detection of fixnum performed in one step
« Cuts add time from six to three

SPARC compiler structure

* source program

front end
* Sun IR
optimizer
driver
i Determines which variables may at some
allaser time point to same location
iropt Global optimizer
* Sun IR
cgrdr Translate Sun IR (intermediate code) to the PCC
trees used by the code generator
* PCC trees
code
generator
* assembly code
inliner Expand procedures inline

* assembly code

c2 Assembly level optimizer integrated with

SPARC assembler

assembler

* relocatable

Global optimization

 Loop-invariant code motion

» Induction-variable strength reduction

- Common subexpression elimination

- Copy propagation

- Register allocation (modified graph coloring)
- Dead code elimination

* Loop unrolling

- Tail-recursion elimination

 No interprocedural optimization

Peephole optimization

- Eliminates unnecessary jumps

- Eliminates redundant loads and stores
* Deletes unreachable code

* Does loop inversion

» Utilizes machine idioms

- Performs register coalescing

- Handles instruction scheduling

* Does leaf-routine optimization

* Performs cross jumping

- Handles constant propagation

Tail recursion elimination

- Self-recursive procedure
* Only action after it returns to self is to itself return
* Recursion can be transformed to iteration
« Savings due to optimization
* Reduces window overflows and underflows
- Saves stack allocation, manipulation and deallocation
» Detect call by reference and suppress elimination
- Number of parameters to C routine can vary (ouch!)

Loop unrolling

* Replace loop body with several copies of the body
+ Adjust control code as necessary
« Advantages
- Especially good for loops with constant bounds
 Reduces overhead of looping
* Increases effectiveness of instruction scheduling
- Conditions for unrolling
- Contain only a single basic block (straight-line code)
- Generate at most 40 triples of Sun IR code
- Contain floating-point operations
- Have simple loop control
 Loop body is unrolled once; more are switch controlled

Instruction scheduling

* Special scheduling cases
* Delay branch filling (or conditional annulment)
 Overlap load and instruction without dependency
- Parallel execution of integer and FP instructions
- Parallel execution of floating add and multiply
« All cases may interact with one another!
- Effectiveness (Stanford benchmark)
« Branch filling - utilizes all but 5% of slots
 Overlap load - 74% scheduled without dependency

In-line expansion

* Replace calls with assembly language code sequence
- Advantages

« Save execution time

* Allow further improvement by peephole optimizer

Leaf-routine optimization

* A routine that does not call any other routine

* Must use just a few registers and no local stack frame

* Eliminate save and restore (maybe 15%7)

* Reduces the number of window overflows and underflows

