
Topics in computer architecture

SPARC compilers

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1990-2013 Paul J. Drongowski



SPARC compilers
• "Optimizing compilers for SPARC," Steven S. Muchnick,
     SunTechnology, Summer 1988, pg. 64 - 77
• "A global optimizer for Sun FORTRAN, C, and Pascal,"
     V. Ghodssi, et al., Summer 1986 USENIX Conference,
     June 1986, pg. 318 - 334
• Claim
     • Few choices for proper instruction, addressing mode
     • Can easily generate locally optimal code for expressions
     • Lets developers concentrate on
          ! Runtime environment
          ! Global code optimization

Registers

• Register allocation is key resource allocation issue
• Load/store architecture makes good allocation critical
• Three sets of registers are visible at any time
     • Global integer registers
          • Global integer register g0 is special
          • Reads as value zero and ignores write operations
          • Subroutine caller must save global live variables
          • Global var's can be accessed by offset from base
     • Global floating-point registers
          • Function as FP registers (of course!)
          • Also used as caller-saved variables and temporaries
     • Windowed integer registers
          • i0 to i7 ins
          • l0 to l7 locals
          • o0 to o7 outs
          • sp (same as o6) stack pointer
          • fp (same as i6) frame pointer
          • o7 return address



Addressing
• Computational instructions

     • Register ! register " register

     • Register ! immediate " register
• Load and store instructions

     • Register ! register " effective address

     • Register ! immediate " effective address
     • All immediate values are signed 13-bit integers
     • Use g0 to form absolute address
• sethi instruction
     • Used to build 32-bit constants and addresses
     • Loads a 22-bit constant into high end of register
     • The low order 10 bits are set to zeroes
     • Example
          sethi  %hi(loc), %i1
          ld     [%i1+%lo(loc)], %i2
     • Loads word at address loc into i2
     • Most constants are short so sethi is rarily 

Stack model

• Stack frame is addressed relative to fp
     • Parameters beyond the sixth (if any)
     • Parameters that must be memory addressable
     • Address of stack space for a C struct return value
     • Space for (window) overflow in and local registers
     • Automatic variables that must be memory addressable
     • Compiler generated temporaries
     • Saved floating-point registers
• Addressed relative to stack pointer sp
     • Temporaries
     • Outgoing procedure parameters



Procedure call and return
･ Parameter passing
     ･ Move parameters to caller's out registers
     ･ Extra parameters are pushed on stack via sp
     ･ Six registers are available for parameter passing
･ Procedure invocation instructions
     ･ call (one cycle plus delay slot)
          ･ 30-bit PC-relative word displacement
          ･ Stores return address in o7
     ･ jmpl (one cycle plus delay slot)
          ･ Jump and link instruction
          ･ Target is sum of 2 registers or register & immediate
          ･ Store return address in specified register
･ Procedure prologue
     ･ save instruction changes register window
     ･ Caller's outs become procedure's in registers
     ･ New set of locals and outs are provided
     ･ Allocate new stack frame by setting new sp from old 
sp
･ Execution
     ･ Unused ins and locals can be used
･ Postlude (exit sequence)
     ･ Return value is written into one of the in registers
     ･ Value will be available as a caller out register
     ･ restore instruction deallocates register window
     ･ Resets the caller's stack pointer
     ･ jmp to return address
･ Aggregate value return
     ･ C struct cannot be returned in a single register
     ･ Caller must allocate return area on stack
     ･ Address of memory area is passed as a parameter
     ･ Procedure checks if caller is expecting aggregate
     ･ Procedure looks for unimp instruction and block size
     ･ If found and size matches, then return normally
     ･ Else, execute unimp instruction and cause a trap



Multiply and divide
• No multiply, divide or remainder instructions in SPARC
• Must be synthesized from elementary operations
• Multiply step instruction mulscc
• Multiply by constant handled as special case
     • Uses sequence of shifts and adds
     • Will use subtraction if overflow detection is not needed
     • Example: Multiplication by 30
          sll  %o2, 1, %o2    ! 2 * X -> X
          sll  %o2, 4, %o3    ! 16 * X -> Y
          sub  %o3, %o2, %o2  ! y - X -> X
• Runtime leaf routines
     • Used for multiplication of two variables and  all divisions
     • Statistics were gathered on multiply and divide
     • Biased to terminate quickly for common cases
     • Example multiplication statistics
          • 90% have at least one nonnegative operand
          • 90% have one operand of 7 bits or less
          • 99% have one operand at most 9 bits long
          • Thus, choose shorter operand in multiply
          • Average multiply takes less than 6 cycles
          • Average var x var  takes 24 cycles

Tagged data support

• Special add and subtract instructions
• Treat low order two bits as a type tag
• Can (optionally) cause a trap
• taddcc (taddcctv)
     • Add two operands together and store result
     • Set overflow if either tag is non-zero or add overflows
• Example: Common LISP fixnum arithmetic
     • Sum and detection of fixnum performed in one step
     • Cuts add time from six to three



SPARC compiler structure

optimizer
driver

aliaser

iropt

inliner

assembler

c2

code
generator

cgrdr

front end

source program

Sun IR

Sun IR

PCC trees

assembly code

assembly code

relocatable

Determines which variables may at some
time point to same location

Global optimizer

Translate Sun IR (intermediate code) to the PCC
trees used by the code generator

Assembly level optimizer integrated with
SPARC assembler

Expand procedures inline



Global optimization
• Loop-invariant code motion
• Induction-variable strength reduction
• Common subexpression elimination
• Copy propagation
• Register allocation (modified graph coloring)
• Dead code elimination
• Loop unrolling
• Tail-recursion elimination
• No interprocedural optimization

Peephole optimization

• Eliminates unnecessary jumps
• Eliminates redundant loads and stores
• Deletes unreachable code
• Does loop inversion
• Utilizes machine idioms
• Performs register coalescing
• Handles instruction scheduling
• Does leaf-routine optimization
• Performs cross jumping
• Handles constant propagation

Tail recursion elimination
• Self-recursive procedure
• Only action after it returns to self is to itself return
• Recursion can be transformed to iteration
• Savings due to optimization
     • Reduces window overflows and underflows
     • Saves stack allocation, manipulation and deallocation
• Detect call by reference and suppress elimination
• Number of parameters to C routine can vary (ouch!)



Loop unrolling
• Replace loop body with several copies of the body
• Adjust control code as necessary
• Advantages
     • Especially good for loops with constant bounds
     • Reduces overhead of looping
     • Increases effectiveness of instruction scheduling
• Conditions for unrolling
     • Contain only a single basic block (straight-line code)
     • Generate at most 40 triples of Sun IR code
     • Contain floating-point operations
     • Have simple loop control
• Loop body is unrolled once; more are switch controlled

Instruction scheduling
• Special scheduling cases
     • Delay branch filling (or conditional annulment)
     • Overlap load and instruction without dependency
     • Parallel execution of integer and FP instructions
     • Parallel execution of floating add and multiply
• All cases may interact with one another!
• Effectiveness (Stanford benchmark)
     • Branch filling - utilizes all but 5% of slots
     • Overlap load - 74% scheduled without dependency

In-line expansion
• Replace calls with assembly language code sequence
• Advantages
     • Save execution time
     • Allow further improvement by peephole optimizer

Leaf-routine optimization
• A routine that does not call any other routine
• Must use just a few registers and no local stack frame
• Eliminate save and restore (maybe 15%?)
• Reduces the number of window overflows and underflows


