
Topics in computer architecture

SunOS on SPARC

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1990-2013 Paul J. Drongowski

SunOS on SPARC

"SunOS on SPARC," S.R. Kleiman and D. Wiiliams,
Sun Technology, Summer 1988, pg. 56 - 63

Virtual memory

• CPU does not have internal memory management
• CPU cache contains virtual addresses
• Memory management unit (MMU)
 • Provides protection and mapping
 • Two-level static-RAM based translation table
• "Segement map" (first-level table)
 • Index by 4-bit context and 12-bit segment number
 • Produce index into page map table
 • "Context"
 ! Context is selected by Context Register
 ! Memory map of virtual address space for a process
• "Page map" (second-level table)
 • 9-bit index from segment map and 5-bit VA page
 • Page table entry
 ! Actual physical page address
 ! Protection information and statistics bits
 • Page size is 8K bytes
 • "Page map entry group" (PMEG)
 ! 32 page map entries
 ! Each PMEG maps 256K bytes of memory

Context Register

SPARC
IU

Segment Map Page Map

11 or 00

4 9

VA<30:31>
VA<29:18> VA<17:13>

PA<31:13>

PA<12:0>

Process address space

• Portions of 32-bit virtual address space can be unmapped
• Part of address space can be marked invalid
• Process has a "hole" that grows or shrinks
•!Sun-4/200
 • 16 contexts
 • 1 gigabyte of mappable virtual address space
 • 512 Mbytes at the top; 512 Mbytes at the bottom
• Operating system kernel
 • Occupies top 128 Mbytes in all contexts
 • u area

 • Per-process, global structure
 • Can be accessed with short, absolute address
 • Contains the kernel stack
 • Direct Virtual Memory Access (DVMA)
 • Used by external I / O devices
 • Provides mapping for devices into memory
 • Translates device memory requests to physical ones
• User area
 • User text (code) is in low virtual memory
 • User data (or heap) is above text and grows up
 • User stack grows down toward the "hole"

u area

DVMA

Kernel

User stack

Invalid

User text

User data

"Hole"

0xFFFFFFFF

0xF8000000

0x2000

0x0000

• MMU is managed as a cache of entries
• Process begins execution without a context
• Context is built on first page fault
• Context or PMEG is taken away if no free ones available

MMU management

Page table entry
• Physical Page Number (PPN)
• Cacheable ($)
• Modified (M)
• Referenced (R)
• Access permissions (ACC)
• Entry Type (ET)

Fault Status Register
• External Bus Error (EBE) - timeout, parity error
• Level (L) - segement or page mapping level
• Access Type (AT) - user/supervisor, read/write/execute
• Fault Type (FT)
 • Invalid address error
 • Protection error
 • Privilege violation
 • Translation error
 • Access bus error
 • Internal error

MMU access
• MMU registers accessed as peripheral device registers
• Registers
 • Control Register
 • Context Table Pointer and Context Registers
 • Fault Status and Fault Address Registers

Cache consistency
• Memory is accessed through virtually addressed cache
• Synonyms
 • Two or more VA's that map to same physical address
 • Cache entries can become inconsistent
 • Sun-4 synonyms can be cached if in same cache line
 • Note that this condition is machine dependent!
• Solution
 • Turn off cache for pages that have synonyms
 • Kernel maintains list of all mappings to a physical page
 • Request for new mapping to a physical page
 •!Check for cached synonyms ("condition" above)
 • If yes, then all mappings may be cached
 • Otherwise, flush cache and mark page uncachable

Trap sequence

• Trap Base Register (TBR) points to a trap table
• Trap Table is indexed by trap type (256 types possible)
• Sequence
 • Disable traps
 • Copy S field to PS field in PSR; Set S to "supervisor"
 • Decrement Current Window Pointer (CWP) by 1
 • Save PC and nPC in r17 and r18 of new window
 • Load PC and nPC from trap table according to type
• Trap types
 • Synchronous
 • Reset
 • Window overflow and underflow
 • Instruction access and data access exception
 • Illegal or privileged instruction
 • FP or co-processor disabled
 • Memory address not aligned
 • Trap instruction
 • Asynchronous (interrupts)
 • Floating point / coprocessor exception traps

Processor State Register (PSR)
• Current Window Pointer (CWP)
• Enable Traps (ET) bit
• Supervisor (S) bit
• Previous Supervisor (PS) bit
• Window Invalid Mask (WIM)

Window overflow and underflow
• Form LIFO stack
• Save instruction pushes a window; Restore pops
• Overflow and underflow detection
 • Mark at least one window invalid (in WIM)
 • Usually between least and most recently used window
 • Save or restore to invalid window causes trap
 • Must prevent overlap of ins and outs
 • Need one window as CWP is decremented on trap
 • Trap handler may only use local registers freely
• Windows are saved on normal program stack
 • Out register (normally SP) points to save area
 • Area will contain 8 in and 8 local registers for
window
 • One window save/restore is the most effective
• Handler
 • Loads and stores SPARC doublewords
 • Stack pointer must be doubleword aligned
 • Must check for save area VM residency

window_overflow:
 save
 %wim = rotate_right(%wim)
 if (window to be saved is a user window)
 if (%sp & 7)
 save user window to intenal buffer
 goto user_alignment_trap
 if (stack is writeable)
 save window data to stack
 else
 save window data to internal buffer
 if (user_trap) goto user_page_fault
 else
 save system window data to stack
 restore
 return from trap

window_underflow:
 %wim = rotate_left(%wim)
 restore
 restore
 if (user_trap)
 if (%sp & 7)
 goto user_alignment_trap
 if (stack is not readable)
 goto user_page_fault
 restore window from stack
 save
 save
 return from trap

Generic trap handlers
• Standard preamble and postamble for traps
• Trap handler can use register windows
• Generic preamble
 • Save the global registers
 • Save the PSR
 • If window overflow, save next window
 • If it's an interrupt, set the processor interrupt level
 • Enable traps
 • Dispatch to handler code
• Generic postamble
 • If window underflow, restore previous window
 • Restore the PSR
 • Restore the global registers
 • Return from trap
• Kernel must clean the kernel register windows

Floating-point trap handlers

• FPU is enabled by bit in the PSR
 • Processes start with the FPU disabled
 • Execution of first FP instruction produces trap
 • Handler enables the FPU
 • Initializes FPU registers to "Not a Number" (NaN)
 • Marks the process for FPU context switching
• Kernel can simulate unimplemented FP operations
• FPU operation
 • Concurrent with Integer Unit (IU)
 • Multiple FP operations may proceed in parallel
 • FPU saves state when exception occurs
 • All FP operations appear to complete in sequence
• FPU exceptions
 • Generated asynchronously, taken in synch by IU
 • FPU maintains queue of address/instruction pairs
 • Trap handler unloads queue and takes action

Context switching
• Main action is saving/restoring windows on stack
• Two less than number of windows must be moved
• Three active register windows are flushed (average)
• Kernel context switch
 • Flush current stack from virtual address cache
 • Flush is expensive (75% of context switch time)
 • Switch kernel stacks by switching MMU u area
entries
cswitch:
 store stack pointer
 store PC (return address)
 save global registers (if required)
 save floating-point registers (if required)
 flush active register windows to the stack
 restore floating-point registers (if required)
 restore global registers (if required)
 load new return address
 load new stack pointer
 restore
 return

Sun OS cswitch:
 store stack pointer
 store PC (return address)
 save global registers (if required)
 save floating-point registers (if required)
 save; save; ... NWINDOWS-2 times
 restore; restore; ... NWINDOWS-2 times
 update u area MMU entries
 charge to new MMU context
 restore floating-point registers (if required)
 restore global registers (if required)
 load new return address
 load new stack pointer
 restore

OS related instructions

• Load from alternate space (lda)
 • Privileged instruction
 • (un)signed byte, halfword, word, double word
 • Must specify address space identifier (asi)
• Store into alternate space (sta)
 • Privileged instruction
 • (un)signed byte, halfword, word, double word
 • Must specify address space identifier (asi)
• Atomic load-store unsigned byte (ldstub)
 • Read byte from memory, write all ones back atomically
 • Multiprocessors are guaranteed to execute sequentially
 • Alternate space version (privileged)
• Swap register with memory (swap)
 • Swap register with contents of location atomically
 • Asynchronous traps are not allowed
 • Multiprocessor execute is sequential in some order
 • Alternate space version (privileged)
• Return from trap (rett)
 • Adds one to CWP (deallocates current window)
 • Can cause underflow trap
 • Delayed control transfer to target address
 • Privileged instruction
• Read Processor Status Register (rdpsr)
 • Privileged instruction
 • Corresponding write to PSR
• Read Window Invalid Mask Register (rdwim)
 • Privileged instruction
 • Corresponding write to WIM
• Read Trap Base Register (rdtbr)
 • Privileged instruction
 • Corresponding write to TBR
• Unimplemented instruction (unimp)
• Instruction cache flush (iflush)
 • Flushes specific word from internal instruction cache
 • Causes trap if instruction cache is not internal

