Topics in computer architecture

SunOS on SPARC

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1990-2013 Paul J. Drongowski



SunOS on SPARC

"SunOS on SPARC," S.R. Kleiman and D. Wiiliams,
Sun Technology, Summer 1988, pg. 56 - 63

Virtual memory

- CPU does not have internal memory management
« CPU cache contains virtual addresses
- Memory management unit (MMU)
* Provides protection and mapping
- Two-level static-RAM based translation table
- "Segement map" (first-level table)
* Index by 4-bit context and 12-bit segment number
* Produce index into page map table
- "Context"
¢ Context is selected by Context Register
¢ Memory map of virtual address space for a process
- "Page map" (second-level table)
* 9-bit index from segment map and 5-bit VA page
- Page table entry
¢ Actual physical page address
¢ Protection information and statistics bits
- Page size is 8K bytes
- "Page map entry group" (PMEGQG)
¢ 32 page map entries
¢ Each PMEG maps 256K bytes of memory

Context Register Segment Map Page Map
4, > Y »
7 PA<31:13>
L >
11 or 00
VA<30:31>
VA<29:18> VA<17:13>
PA<12:0>
SPARC >

IU




Process address space

» Portions of 32-bit virtual address space can be unmapped
- Part of address space can be marked invalid
* Process has a "hole" that grows or shrinks
« Sun-4/200
* 16 contexts
- 1 gigabyte of mappable virtual address space
* 512 Mbytes at the top; 512 Mbytes at the bottom
 Operating system kernel
« Occupies top 128 Mbytes in all contexts
* U area
* Per-process, global structure
- Can be accessed with short, absolute address
- Contains the kernel stack
» Direct Virtual Memory Access (DVMA)
- Used by external | / O devices
 Provides mapping for devices into memory
- Translates device memory requests to physical ones
« User area
 User text (code) is in low virtual memory
- User data (or heap) is above text and grows up
 User stack grows down toward the "hole"

OXFFFFFFFF
u area
DVMA
Kernel
0xF8000000
User stack
HHOle"
User data
User text
0x2000
Invalid

0x0000



Page table entry

- Physical Page Number (PPN)
« Cacheable ($)
- Modified (M)
- Referenced (R)
- Access permissions (ACC)
 Entry Type (ET)

MMU management

- MMU is managed as a cache of entries

* Process begins execution without a context

 Context is built on first page fault

- Context or PMEG is taken away if no free ones available

MMU access

- MMU registers accessed as peripheral device registers
* Registers

- Control Register

- Context Table Pointer and Context Registers

- Fault Status and Fault Address Registers

Fault Status Register

- External Bus Error (EBE) - timeout, parity error
* Level (L) - segement or page mapping level
 Access Type (AT) - user/supervisor, read/write/execute
 Fault Type (FT)
- Invalid address error
* Protection error
* Privilege violation
* Translation error
» Access bus error
* Internal error



Cache consistency

* Memory is accessed through virtually addressed cache
« Synonyms
- Two or more VA's that map to same physical address
 Cache entries can become inconsistent
« Sun-4 synonyms can be cached if in same cache line
* Note that this condition is machine dependent!
« Solution
* Turn off cache for pages that have synonyms
- Kernel maintains list of all mappings to a physical page
- Request for new mapping to a physical page
« Check for cached synonyms ("condition" above)
- If yes, then all mappings may be cached
« Otherwise, flush cache and mark page uncachable

Trap sequence

- Trap Base Register (TBR) points to a trap table

- Trap Table is indexed by trap type (256 types possible)
- Sequence

* Disable traps
« Copy S field to PS field in PSR; Set S to "supervisor"
« Decrement Current Window Pointer (CWP) by 1
- Save PC and nPC in r17 and r18 of new window
- Load PC and nPC from trap table according to type
* Trap types
« Synchronous
* Reset
* Window overflow and underflow
* Instruction access and data access exception
- lllegal or privileged instruction
* FP or co-processor disabled
* Memory address not aligned
« Trap instruction
« Asynchronous (interrupts)
* Floating point / coprocessor exception traps



Processor State Register (PSR)

 Current Window Pointer (CWP)
- Enable Traps (ET) bit
 Supervisor (S) bit

* Previous Supervisor (PS) bit

* Window Invalid Mask (WIM)

Window overflow and underflow

« Form LIFO stack
* Save instruction pushes a window; Restore pops
 Overflow and underflow detection
* Mark at least one window invalid (in WIM)
+ Usually between least and most recently used window
* Save Or restore to invalid window causes trap
- Must prevent overlap of ins and outs
* Need one window as CWP is decremented on trap
- Trap handler may only use local registers freely
* Windows are saved on normal program stack
 Out regqister (normally SP) points to save area
« Area will contain 8 in and 8 local registers for
window
+ One window save/restore is the most effective
- Handler
* Loads and stores SPARC doublewords
» Stack pointer must be doubleword aligned
* Must check for save area VM residency

window overflow:

save window underflow:
swim = rotate right(%wim) Swim rotate left(%wim)
. . — . . restore
if (window to be saved is a user window)
. restore
if (%sp & 7)

if (user_ trap)
if (%sp & 7)
goto user alignment trar

save user window to intenal buffer
goto user alignment trap
if (stack is writeable)

save window data to stack if (stack is not readable)
else goto qser_page_fault
save window data to internal buffer restore window from stack
. save
if (user_ trap) goto user page fault save
else return from tra
save system window data to stack p

restore
return from trap



Generic trap handlers

- Standard preamble and postamble for traps
 Trap handler can use register windows
+ Generic preamble
- Save the global registers
- Save the PSR
* If window overflow, save next window
- If it's an interrupt, set the processor interrupt level
- Enable traps
- Dispatch to handler code
 Generic postamble
- If window underflow, restore previous window
* Restore the PSR
- Restore the global registers
* Return from trap
« Kernel must clean the kernel register windows

Floating-point trap handlers

* FPU is enabled by bit in the PSR
- Processes start with the FPU disabled
- Execution of first FP instruction produces trap
- Handler enables the FPU
- Initializes FPU registers to "Not a Number" (NaN)
* Marks the process for FPU context switching
 Kernel can simulate unimplemented FP operations
* FPU operation
« Concurrent with Integer Unit (1U)
 Multiple FP operations may proceed in parallel
* FPU saves state when exception occurs
* All FP operations appear to complete in sequence
* FPU exceptions
- Generated asynchronously, taken in synch by U
- FPU maintains queue of address/instruction pairs
- Trap handler unloads queue and takes action



Context switching

* Main action is saving/restoring windows on stack
» Two less than number of windows must be moved
- Three active register windows are flushed (average)
« Kernel context switch
* Flush current stack from virtual address cache
* Flush is expensive (75% of context switch time)
- Switch kernel stacks by switching MMU u area

entries
cswitch:

store stack pointer

store PC (return address)

save global registers (if required)

save floating-point registers (if required)
flush active register windows to the stack
restore floating-point registers (if required)
restore global registers (if required)

load new return address

load new stack pointer

restore

return

Sun OS cswitch:
store stack pointer
store PC (return address)
save global registers (if required)
save floating-point registers (if required)
save; save; ... NWINDOWS-2 times
restore; restore; ... NWINDOWS-2 times
update u area MMU entries
charge to new MMU context
restore floating-point registers (if required)
restore global registers (if required)
load new return address
load new stack pointer
restore



OS related instructions

- Load from alternate space (1da)
* Privileged instruction
- (un)signed byte, halfword, word, double word
- Must specify address space identifier (asi)
- Store into alternate space (sta)
* Privileged instruction
- (un)signed byte, halfword, word, double word
- Must specify address space identifier (asi)
« Atomic load-store unsigned byte (1dstub)
- Read byte from memory, write all ones back atomically
 Multiprocessors are guaranteed to execute sequentially
- Alternate space version (privileged)
- Swap register with memory (swap)
- Swap register with contents of location atomically
« Asynchronous traps are not allowed
 Multiprocessor execute is sequential in some order
- Alternate space version (privileged)
* Return from trap (rett)
 Adds one to CWP (deallocates current window)
- Can cause underflow trap
- Delayed control transfer to target address
- Privileged instruction
- Read Processor Status Register (rdpsr)
- Privileged instruction
« Corresponding write to PSR
* Read Window Invalid Mask Register (rdwim)
- Privileged instruction
» Corresponding write to WIM
- Read Trap Base Register (rdtbr)
- Privileged instruction
« Corresponding write to TBR
« Unimplemented instruction (unimp)
* Instruction cache flush (if1lush)
* Flushes specific word from internal instruction cache
« Causes trap if instruction cache is not internal



