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von Neumann organization

• Most prevelant computer architecture
• Single central processing unit (CPU)
     • Central clock
     • CPU executes instructions in step with clock
     • CPU is the system master
     • Control and communications center for entire system
• Primary memory
     • Linearly addressable array of binary words
     • Each word is a fixed size
• CPU - memory channel
     • Set of parallel information paths
     • Exchange control signals, addresses, data
     • Sequential operation
          • Set control for read, send address, receive data
          • Set control for write, send address and data
     • Address is an index into the linear memory array
• Programming
     • Instructions and data
          • Binary codes
          • Stored in primary memory
     • Elemental operations on elemental operands
     • Program counter sequences instructions
     • (Un)conditional branches for loops and decisions
     • Arithmetic is parallel binary
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Some exceptions

• Burroughs B5500, etc. stack addressable storage
• Burroughs B1800 does not have fixed logical word length
• IBM 370 series has special I/O channels
• CDC Star and Cray have multiple arithmetic processors



Self-consistency (harmony)
• "Recursive machines and computing technology,"
     V.M. Glushkov, et al., IFIP Information Processing '74,
     North Holland Publishing, 1974.
• von Neumann principles are self-consistent (re-enforcing)
     • Central clock and sequential transfers through channel
     • PC steps sequentially through linear memory array
     • Fixed word width and parallel arithmetic
• Revision of one or two principles will destroy harmony
• Intuitively self-consistency is a "good fit" of principles

Improving von Neumann speed

• Use faster components
     • Increase speed of CPU, memory, channel
     • Bounded by physical limitations
• Exploit locality
     • Keep operands in local cache or general registers
     • Reduces number of channel operations
• Concurrency
     • Increase number of processor - memory channels
          ! Multiple address and data streams
          ! Typically found in vector supercomputers
     • Increase input/output concurrency
          ! Perform computation and I/O simultaneously
          ! Add "direct memory access" channel
          ! Increases speed of bulk data transfers
     • Pipelining
          ! Degree of concurrency limited by number of stages
          ! Pipe disrupted by change in control flow
          ! Disruptions due to data dependency hazards
     • Synchronization and arbitration must be provided
          ! Processes (and devices) must co-ordinate
          ! Interrupts are a synchronization mechanism
          ! Would like to virtualize devices into OS processes



Further problems
• Gap between machine and HL programming language
     ! Implement features of HLL in hardware
     ! Semantic clash
     ! Recursion is usually expensive
• Linear organization does not fit application data model
     ! Leads to construction of sophisticated storage managers
• Sequential centralized control
     ! Complicates operating system design
     ! Processes must be forced into single instruction stream
     ! Nondeterministic effects must be suppressed
     ! Inhibits extensibility
• Throughput depends on component speed
     ! Wire delay is now dominant
     ! Compounded by chip partition

Recursive machine principles

• No limit on complexity of operators and operands
     ! Operands may be numbers, strings, vectors, whatever
     ! New types recursively mapped to primitive structures
     ! Implies a "procedural" data model (i.e. executable data)
• Program elements executed when operands are available
     ! Use memory associativity to detect "ready" elements
• Memory structure is reprogrammable
     ! Convert data and programs to internal form
     ! New types and machines are recursively definable
     ! One level implemented in terms of other levels
• No limit to number of machine elements
     ! Performance tuning by adding and removing elements
     ! Replace broken machines dynamically
• Organization is flexible, re-programmable
     ! Communication switches needed between RC elements
     ! Switches are programmable
     ! Note: An RC element is a processor-memory pair



Data driven dataflow computing
･ Initiate activity when necessary information is available
･ Example: (a ｴ b) + (c ｴ d)
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･ DDN dataflow program is a cyclic bipartite  directed 
graph

     ･ Graph vertices can be divided into two subsets
     ･ All edges in graph connect only the two subsets
     ･ No edge connects two vertices within same subset
･ Cell
     ･ Graph node (vertex)
     ･ Operation to be performed
     ･ Operation determines number of inputs and outputs
     ･ Operation determines the type of arguments accepted
･ Arc
     ･ Connects a producer cell to a consumer cell
     ･ Arc is a FIFO queue of (conceptually) inifinite length
     ･ Carry messages called tokens
     ･ Message can be almost any data structure
･ Firing rule
     ･ Set of inputs that govern firing is a firing set
     ･ Cell is fireable  when firing set is satisfied
     ･ May fire when data is availabe at all inputs in firing set
     ･ To fire, remove item from head of each input queue
     ･ Remove tokens only from firing set
     ･ Compute the result
     ･ Send result item on outgoing arc(s)



Characteristics

• Concurrency
     • Horizontal (MUL's are independent)
     • Pipelined (due to FIFO queues between cells)
     • May be exploited if multiple functional units available
     • Maximally parallel
• Functional program
     • Data is a value not a storage location (state)
     • Not history dependent
     • Result depends solely on input values
     • No side-effects making verification easier
• Nonprocedural program
     • Execution order not strictly dependent on lexical order
     • Order is dependent on functional relationships
     • Can be described denotationally
• von Neumann programming
     • Control driven; rigidly sequences
     • Uses explicit addresses
     • Program directly manipulates memory state
     • Tight binding between data and memory location

• Data driven programming
     • Functional and nonprocedural
     • No memory cells or addresses
     • Memory is embedded in store semantics of arcs
     • Only data dependency affects sequencing

move     a, register-0
multiply b, register-0
move     c, register-1
multiply d, register-1
add      register-1, register-0
move     register-0, result



Demand driven dataflow

• Two types of messages are sent over arcs
     • Demands  flow from outputs back to inputs
     • Result values  flow forward in data driven 
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• Advantages
     • Avoids unnecessary computation
     • Example: if - then - else
          • Data driven computes all expressions
          • Either then  or else  part will be discarded
          • Demand driven computes only needed value
          • Conserves physical computing resources
     • Can "represent" infinite data structures (objects)
          • Provide a net to compute an infinite stream
          • Just demand next value in stream when needed
     • Lazy evaluation
          • Postpone generation of item until needed
          • Potentially an item may never be needed
          • Again, this conserves physical computing resources
          • Example: Lazy cons (LISP)
               • cons joins two subtrees into one tree
               • Often one subtree is immediately discarded
               • Lazy cons waits until needed subtree is selected
• Disadvantages
     • Twice as many messages must be sent
     • Data driven - demand always  exists at cell outputs



Co-ordination of parallel processing
• Programs must co-ordinate exchange of information
     • Program execution is explicitly sequenced
     • System level behavior is asynchronous
     • Mixture causes a conceptual mismatch
     • Example: Interrupt mechanism vs. virtual device process
• Dataflow naturally co-ordinates processes
• Logical and physical change of context is not needed

Decentralization and buildability

• Current multiprocessors engender "global state" approach
• All processes share common global state
• Runs counter to "divide and conquer" software design
• Centralized systems often use a common clock
• Clock must be distributed to system components
• Clock skew is sensitive to distance between components
• Longer propagation time means slower performance
• Novel physical packaging has its limitations
• Expansion difficult due to synchronous time constraints

Centralized systems

• Extensibility
     ! Incrementally add more processing modules
     ! Addition should not require change to operating system
     ! Plug in new modules without "tuning"
     ! Extensions available in small quantums
• Characteristics of a fully distributed system
     ! No module can determine total system state
     ! No module can enforce simultaneity in other modules
• Key is decentralization and asychronous operation



Implementation technology
• von Neumann era
     • Vacuum tube technology
     • Minimize components
          • Active circuitry is expensive
          • Delay of circuitry dominated; wire delay insignificant
     • "Hardware is expensive, software is cheap"
• Economic principles not valid anymore

VLSI technology

• Production cost for custom chip is $80,000 to $300,000
• Production goal 
     • 250,000 parts at $7 to $10 per part
     • Part must be used in large volume
     • Keep number of distinct part types low
• Speed (dominated by signal drive into conducting path)
     • Delay proportional to signal path capacitance
     • Off-chip 100pF versus 1pF on-chip fan-out
     • Perform as much function as possible on-chip
     • Keep on-chip wires short
     • Exploit physical locality!
• Number of pins
     • Manufacturing cost is roughly linear with pin count
     • Can decrease times by time division multiplexing
     • Performance penalty is incurred by multiplexing
     • Disadvantages of increased pin count
          • Decreased yield due to bonding problems
          • More silicon area for connection pads and drivers
• Other advantages
     • Increased system reiliability due to reduced part count
     • Decreased (system level) power consumption
     • Lower maintenance cost through chip replacement
• Try to achieve very high logic to pin ratio 





Data Driven Machine 1 (DDM1)

• Alan L. Davis, University of Utah
• Low level machine language (DDN's)
• Goals and principles
    • General purpose computing
    • Improve performance through concurrency
          • Potential concurrency in program must be very high
          • Large number of function units must be available
          • DDN's contain "fine grain" concurrency
     • Compatible with VLSI technology
          • Use large number of identical processing sites
          • Each site should ideally be one part type
     • Extensible
          • Increase performance by adding plug-in modules
          • Distributed, asynchronous control
          • Hierarchical organization
               • Simplifies conceptual complexity at each level
               • Verification by induction for uniform systems
               • Natural superior-inferior relationship
               • Helps resolve resource management
          • Leads to a physical tree of processing modules
     • Logical extensibility
          • Recursive hierarchy
          • Structure is same at all levels of hierarchy
          • Implies that same module can be used at all levels
          • Physical recursion ends at logically deepest resources
          • Fan-out from level to execute independent operations
          • Depth used to pipeline operations



Architecture
• Architecture is recursively organized PSE's
• Processor - store element (PSE)
     • Fundamental computational unit
     • Substructure
          • Processor module (P)
               • Atomic processor (AP)
               • Eight PSE at next lower level of hierarchy
          • Local storage module (S)
     • PSE can execute any machine language program
• Atomic processor module (AP)
     • No substructure (i.e., no lower PSE's)
     • Bottom of hierarchy consists solely of AP's
• Atomic storage unit (ASU)
     • No substructure
     • Size of store is arbitrary
     • Higher level stores should be slower and larger
     • Ability of parent should be greater than sum of children

Hierarchy
• All AP's are identical regardless of level
• Higher levels are more powerful
     • Higher levels have more substructure
     • Implies more internal concurrent processing capability
• Non-recursive structure
     • Physical tree of PSE's
     • Possibility of eight children per PSE
     • Leaf nodes are just atomic processors and storage units
• Depth of the tree is arbitrary; fan-out is fixed at eight
• Extend machine by adding more levels
• Each PSE is asynchronous so no tuning is needed
• Communication is direct; topology is fixed



PSE structure

• Inter-PSE links are direct
     • PSE's exchange variable length character string msg's
     • Upward messages are switched like an arbiter
     • Downward messages contain header for distribution
     • Hardware switch is independent unit
• Serial communications
     • More applicable for VLSI implementation (pin count)
     • Messages are next fixed width information units
     • Permits substitution of other module implementations
     • Local performance is lost
     • Try to regain performance through high parallelism
• Physical queues placed between levels of PSE's
     • Facilitate pipelining
     • Increase physical module independence
     • Sender must only wait when queue is full
     • Choose queue size for average message length
• System will not deadlock
     • Strict hierarchical control
     • Restricted process structure
• Physical link characteristics
     • Two wire request-acknowledge control link
     • Four wire character-width data bus
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Atomic processor

• DDN to be loaded arrives as a message via the IQ
• Data items also arrive via the IQ
     • Data items has two fields
          • Destination identifier
          • Item value
     • AP interprets the destination identifier
          • If resident in ASU, route to local cell
          • Otherwise, pass to next switch
• If destination cell becomes fireable, fire it
     • Use incoming data item as needed
     • Avoids unnecessary store operation in ASU
• AP produces a result with two fields
     • Destination of the result message
     • Result value
• If result destination is resident, then send it to the AQ
• Otherwise, send the result message to the OQ
• Eventually, process the AQ (agenda queue)
     • Process like arriving messages from the IQ
     • When AQ is empty, then wait on the IQ
     • IQ before AQ strategy
     • Do as much locally as possible before new work

AP

ASU

Agenda queue (AQ)

Input queue (IQ) External

Output queue (OQ) External



Atomic storage unit
• Use the Barton Storage Model (TSM)
• File system with the following commands
     • Initialize
     • Skip - cursor skips over the current field under cursor
     • Insert - inserts character or file before current position
     • Delete - delete the character or file at cursor position
     • Assign - assigns character (file) to current character (file)
     • Read - reads the character or file selected by cursor
     • Head - position to leading '(' of parent field
     • Shift - increment the cursor
     • AIndex
          • Absolute index
          • Index from first character in the store
     • RIndex
          • Relative index
          • Index from current cursor position
• ASU implementation
     • 4K by 4 bit character store using RAM chips
     • Data exchanges use four-cycle self-timed handshake
     • "Mapping unit" can speed up indexing operations

Comments on DDM1

• DDM1 has lots of internal concurrency
• Internal state is impossible to save and restore
• Transfer fields, not characters
• Vector processing is sensitive to number representation
• ASU design was not easily extensible in size
• Fixed tree structure causes load imbalance
• Not enough empirical data on decomposition overhead
• Failure of PSE will cause failure of subtree
• Certain SP-graphs cause less than full pipelining



Manchester dataflow machine

• "The Manchester prototype dataflow computer," J.R. Gurd,
     C.C. Kirkham, and I. Watson, CACM, Vol. 28, No. 1,
     January 1985, pg. 34 - 52
• History
     • Project started in 1976
     • Prototype processing element completed in 1981
     • Constructed 1 million element structure store in 1986
• Characteristics
     • Each processing element (PE) is a ring-like structure
     • Machine is expanded by "layering" PE rings
     • PE's intercommunicate via an exchange switch
          • Successive levels of distribution, buffering, arbitration
          • Tokens contain routing information in name field
          • Buffering mitigates effects of message interference
          • Allows routing around fault processing elements
     • Exchange switch also provides external I/O interfaces
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Processing element (PE)

• Each processing element is a four stage pipeline
• Units are internally synchronous
• Inter-unit communication is asynchronous
• All datapaths are parallel
     • Sizes of tokens and packets are fixed
     • Packet is 166 bits wide!
• Token queue
     • Provides rate balancing
     • FIFO buffer containing up to 32K tokens
• Matching unit
     • Matches incoming tokens for dyadic operations
     • Efficient implementation is crucial
     • Sparse VM with <destination,tag> pair as address
     • Hardware uses a hashing mechanism (vs. associative)
     • If addresses cell is empty (match fails), store token
     • If cell contains token, send both tokens to fetching unit
• Fetching unit
     • Combines tokens with node info into executable packet
     • Node can specify one or two destinations for result
     • Prototype accomodates up to 64K nodes
• Functional unit
     • Preprocessor (PP) interpets tag-handling instructions
     • Functional elements (FE) are microprogrammed

     • Instruction times: 3 µs min, 6µs ave, 30 µs max
     • Throughput rate is irregular (need rate balancing)
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Structure store (SS)

Data structures

• A data structure may be transmitted over an arc
• Transmittion is one element per token at a time
• Different elements are distinguished by index field in tag
• Elements can be produced and accessed in any order
• Allows concurrent processing of structure elements
• Streams

     • Elements are produced and processed in order
     • Non-strict

     • Elements can be read before producing complete stream
     • Use tag manipulation to gain efficiency

• Structure copying useful only for small data structures
• Fixed-size structures can be stored in structure store

• Create-structure  operation
     • Reserves memory area
     • Returns pointer to structure
• Write-element  operation
     • Stores value part of a token
     • Tag and destination are not stored
• Read-element  operation
     • Returns value of an element if it is available
     • Otherwise (not available)
          • Append  request to list of pending read requests
          • Fulfill request when the element is written
     • Allows storage of non-strict structures
• Garbage collection (via reference counters)


