
Topics in computer architecture

Utah data-driven dataflow architecture

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1990-2013 Paul J. Drongowski

von Neumann organization

• Most prevelant computer architecture
• Single central processing unit (CPU)
 • Central clock
 • CPU executes instructions in step with clock
 • CPU is the system master
 • Control and communications center for entire system
• Primary memory
 • Linearly addressable array of binary words
 • Each word is a fixed size
• CPU - memory channel
 • Set of parallel information paths
 • Exchange control signals, addresses, data
 • Sequential operation
 • Set control for read, send address, receive data
 • Set control for write, send address and data
 • Address is an index into the linear memory array
• Programming
 • Instructions and data
 • Binary codes
 • Stored in primary memory
 • Elemental operations on elemental operands
 • Program counter sequences instructions
 • (Un)conditional branches for loops and decisions
 • Arithmetic is parallel binary

Processor Memory

Addresses

Control

Data

Some exceptions

• Burroughs B5500, etc. stack addressable storage
• Burroughs B1800 does not have fixed logical word length
• IBM 370 series has special I/O channels
• CDC Star and Cray have multiple arithmetic processors

Self-consistency (harmony)
• "Recursive machines and computing technology,"
 V.M. Glushkov, et al., IFIP Information Processing '74,
 North Holland Publishing, 1974.
• von Neumann principles are self-consistent (re-enforcing)
 • Central clock and sequential transfers through channel
 • PC steps sequentially through linear memory array
 • Fixed word width and parallel arithmetic
• Revision of one or two principles will destroy harmony
• Intuitively self-consistency is a "good fit" of principles

Improving von Neumann speed

• Use faster components
 • Increase speed of CPU, memory, channel
 • Bounded by physical limitations
• Exploit locality
 • Keep operands in local cache or general registers
 • Reduces number of channel operations
• Concurrency
 • Increase number of processor - memory channels
 ! Multiple address and data streams
 ! Typically found in vector supercomputers
 • Increase input/output concurrency
 ! Perform computation and I/O simultaneously
 ! Add "direct memory access" channel
 ! Increases speed of bulk data transfers
 • Pipelining
 ! Degree of concurrency limited by number of stages
 ! Pipe disrupted by change in control flow
 ! Disruptions due to data dependency hazards
 • Synchronization and arbitration must be provided
 ! Processes (and devices) must co-ordinate
 ! Interrupts are a synchronization mechanism
 ! Would like to virtualize devices into OS processes

Further problems
• Gap between machine and HL programming language
 ! Implement features of HLL in hardware
 ! Semantic clash
 ! Recursion is usually expensive
• Linear organization does not fit application data model
 ! Leads to construction of sophisticated storage managers
• Sequential centralized control
 ! Complicates operating system design
 ! Processes must be forced into single instruction stream
 ! Nondeterministic effects must be suppressed
 ! Inhibits extensibility
• Throughput depends on component speed
 ! Wire delay is now dominant
 ! Compounded by chip partition

Recursive machine principles

• No limit on complexity of operators and operands
 ! Operands may be numbers, strings, vectors, whatever
 ! New types recursively mapped to primitive structures
 ! Implies a "procedural" data model (i.e. executable data)
• Program elements executed when operands are available
 ! Use memory associativity to detect "ready" elements
• Memory structure is reprogrammable
 ! Convert data and programs to internal form
 ! New types and machines are recursively definable
 ! One level implemented in terms of other levels
• No limit to number of machine elements
 ! Performance tuning by adding and removing elements
 ! Replace broken machines dynamically
• Organization is flexible, re-programmable
 ! Communication switches needed between RC elements
 ! Switches are programmable
 ! Note: An RC element is a processor-memory pair

Data driven dataflow computing
･ Initiate activity when necessary information is available
･ Example: (a ｴ b) + (c ｴ d)

MUL MUL

ADD

a b c d

･ DDN dataflow program is a cyclic bipartite directed
graph

 ･ Graph vertices can be divided into two subsets
 ･ All edges in graph connect only the two subsets
 ･ No edge connects two vertices within same subset
･ Cell
 ･ Graph node (vertex)
 ･ Operation to be performed
 ･ Operation determines number of inputs and outputs
 ･ Operation determines the type of arguments accepted
･ Arc
 ･ Connects a producer cell to a consumer cell
 ･ Arc is a FIFO queue of (conceptually) inifinite length
 ･ Carry messages called tokens
 ･ Message can be almost any data structure
･ Firing rule
 ･ Set of inputs that govern firing is a firing set
 ･ Cell is fireable when firing set is satisfied
 ･ May fire when data is availabe at all inputs in firing set
 ･ To fire, remove item from head of each input queue
 ･ Remove tokens only from firing set
 ･ Compute the result
 ･ Send result item on outgoing arc(s)

Characteristics

• Concurrency
 • Horizontal (MUL's are independent)
 • Pipelined (due to FIFO queues between cells)
 • May be exploited if multiple functional units available
 • Maximally parallel
• Functional program
 • Data is a value not a storage location (state)
 • Not history dependent
 • Result depends solely on input values
 • No side-effects making verification easier
• Nonprocedural program
 • Execution order not strictly dependent on lexical order
 • Order is dependent on functional relationships
 • Can be described denotationally
• von Neumann programming
 • Control driven; rigidly sequences
 • Uses explicit addresses
 • Program directly manipulates memory state
 • Tight binding between data and memory location

• Data driven programming
 • Functional and nonprocedural
 • No memory cells or addresses
 • Memory is embedded in store semantics of arcs
 • Only data dependency affects sequencing

move a, register-0
multiply b, register-0
move c, register-1
multiply d, register-1
add register-1, register-0
move register-0, result

Demand driven dataflow

• Two types of messages are sent over arcs
 • Demands flow from outputs back to inputs
 • Result values flow forward in data driven

MUL MUL

ADD

a b c d

• Advantages
 • Avoids unnecessary computation
 • Example: if - then - else
 • Data driven computes all expressions
 • Either then or else part will be discarded
 • Demand driven computes only needed value
 • Conserves physical computing resources
 • Can "represent" infinite data structures (objects)
 • Provide a net to compute an infinite stream
 • Just demand next value in stream when needed
 • Lazy evaluation
 • Postpone generation of item until needed
 • Potentially an item may never be needed
 • Again, this conserves physical computing resources
 • Example: Lazy cons (LISP)
 • cons joins two subtrees into one tree
 • Often one subtree is immediately discarded
 • Lazy cons waits until needed subtree is selected
• Disadvantages
 • Twice as many messages must be sent
 • Data driven - demand always exists at cell outputs

Co-ordination of parallel processing
• Programs must co-ordinate exchange of information
 • Program execution is explicitly sequenced
 • System level behavior is asynchronous
 • Mixture causes a conceptual mismatch
 • Example: Interrupt mechanism vs. virtual device process
• Dataflow naturally co-ordinates processes
• Logical and physical change of context is not needed

Decentralization and buildability

• Current multiprocessors engender "global state" approach
• All processes share common global state
• Runs counter to "divide and conquer" software design
• Centralized systems often use a common clock
• Clock must be distributed to system components
• Clock skew is sensitive to distance between components
• Longer propagation time means slower performance
• Novel physical packaging has its limitations
• Expansion difficult due to synchronous time constraints

Centralized systems

• Extensibility
 ! Incrementally add more processing modules
 ! Addition should not require change to operating system
 ! Plug in new modules without "tuning"
 ! Extensions available in small quantums
• Characteristics of a fully distributed system
 ! No module can determine total system state
 ! No module can enforce simultaneity in other modules
• Key is decentralization and asychronous operation

Implementation technology
• von Neumann era
 • Vacuum tube technology
 • Minimize components
 • Active circuitry is expensive
 • Delay of circuitry dominated; wire delay insignificant
 • "Hardware is expensive, software is cheap"
• Economic principles not valid anymore

VLSI technology

• Production cost for custom chip is $80,000 to $300,000
• Production goal
 • 250,000 parts at $7 to $10 per part
 • Part must be used in large volume
 • Keep number of distinct part types low
• Speed (dominated by signal drive into conducting path)
 • Delay proportional to signal path capacitance
 • Off-chip 100pF versus 1pF on-chip fan-out
 • Perform as much function as possible on-chip
 • Keep on-chip wires short
 • Exploit physical locality!
• Number of pins
 • Manufacturing cost is roughly linear with pin count
 • Can decrease times by time division multiplexing
 • Performance penalty is incurred by multiplexing
 • Disadvantages of increased pin count
 • Decreased yield due to bonding problems
 • More silicon area for connection pads and drivers
• Other advantages
 • Increased system reiliability due to reduced part count
 • Decreased (system level) power consumption
 • Lower maintenance cost through chip replacement
• Try to achieve very high logic to pin ratio

Data Driven Machine 1 (DDM1)

• Alan L. Davis, University of Utah
• Low level machine language (DDN's)
• Goals and principles
 • General purpose computing
 • Improve performance through concurrency
 • Potential concurrency in program must be very high
 • Large number of function units must be available
 • DDN's contain "fine grain" concurrency
 • Compatible with VLSI technology
 • Use large number of identical processing sites
 • Each site should ideally be one part type
 • Extensible
 • Increase performance by adding plug-in modules
 • Distributed, asynchronous control
 • Hierarchical organization
 • Simplifies conceptual complexity at each level
 • Verification by induction for uniform systems
 • Natural superior-inferior relationship
 • Helps resolve resource management
 • Leads to a physical tree of processing modules
 • Logical extensibility
 • Recursive hierarchy
 • Structure is same at all levels of hierarchy
 • Implies that same module can be used at all levels
 • Physical recursion ends at logically deepest resources
 • Fan-out from level to execute independent operations
 • Depth used to pipeline operations

Architecture
• Architecture is recursively organized PSE's
• Processor - store element (PSE)
 • Fundamental computational unit
 • Substructure
 • Processor module (P)
 • Atomic processor (AP)
 • Eight PSE at next lower level of hierarchy
 • Local storage module (S)
 • PSE can execute any machine language program
• Atomic processor module (AP)
 • No substructure (i.e., no lower PSE's)
 • Bottom of hierarchy consists solely of AP's
• Atomic storage unit (ASU)
 • No substructure
 • Size of store is arbitrary
 • Higher level stores should be slower and larger
 • Ability of parent should be greater than sum of children

Hierarchy
• All AP's are identical regardless of level
• Higher levels are more powerful
 • Higher levels have more substructure
 • Implies more internal concurrent processing capability
• Non-recursive structure
 • Physical tree of PSE's
 • Possibility of eight children per PSE
 • Leaf nodes are just atomic processors and storage units
• Depth of the tree is arbitrary; fan-out is fixed at eight
• Extend machine by adding more levels
• Each PSE is asynchronous so no tuning is needed
• Communication is direct; topology is fixed

PSE structure

• Inter-PSE links are direct
 • PSE's exchange variable length character string msg's
 • Upward messages are switched like an arbiter
 • Downward messages contain header for distribution
 • Hardware switch is independent unit
• Serial communications
 • More applicable for VLSI implementation (pin count)
 • Messages are next fixed width information units
 • Permits substitution of other module implementations
 • Local performance is lost
 • Try to regain performance through high parallelism
• Physical queues placed between levels of PSE's
 • Facilitate pipelining
 • Increase physical module independence
 • Sender must only wait when queue is full
 • Choose queue size for average message length
• System will not deadlock
 • Strict hierarchical control
 • Restricted process structure
• Physical link characteristics
 • Two wire request-acknowledge control link
 • Four wire character-width data bus

OQIQ

AP

Switch

ASU

Atomic processor

• DDN to be loaded arrives as a message via the IQ
• Data items also arrive via the IQ
 • Data items has two fields
 • Destination identifier
 • Item value
 • AP interprets the destination identifier
 • If resident in ASU, route to local cell
 • Otherwise, pass to next switch
• If destination cell becomes fireable, fire it
 • Use incoming data item as needed
 • Avoids unnecessary store operation in ASU
• AP produces a result with two fields
 • Destination of the result message
 • Result value
• If result destination is resident, then send it to the AQ
• Otherwise, send the result message to the OQ
• Eventually, process the AQ (agenda queue)
 • Process like arriving messages from the IQ
 • When AQ is empty, then wait on the IQ
 • IQ before AQ strategy
 • Do as much locally as possible before new work

AP

ASU

Agenda queue (AQ)

Input queue (IQ) External

Output queue (OQ) External

Atomic storage unit
• Use the Barton Storage Model (TSM)
• File system with the following commands
 • Initialize
 • Skip - cursor skips over the current field under cursor
 • Insert - inserts character or file before current position
 • Delete - delete the character or file at cursor position
 • Assign - assigns character (file) to current character (file)
 • Read - reads the character or file selected by cursor
 • Head - position to leading '(' of parent field
 • Shift - increment the cursor
 • AIndex
 • Absolute index
 • Index from first character in the store
 • RIndex
 • Relative index
 • Index from current cursor position
• ASU implementation
 • 4K by 4 bit character store using RAM chips
 • Data exchanges use four-cycle self-timed handshake
 • "Mapping unit" can speed up indexing operations

Comments on DDM1

• DDM1 has lots of internal concurrency
• Internal state is impossible to save and restore
• Transfer fields, not characters
• Vector processing is sensitive to number representation
• ASU design was not easily extensible in size
• Fixed tree structure causes load imbalance
• Not enough empirical data on decomposition overhead
• Failure of PSE will cause failure of subtree
• Certain SP-graphs cause less than full pipelining

Manchester dataflow machine

• "The Manchester prototype dataflow computer," J.R. Gurd,
 C.C. Kirkham, and I. Watson, CACM, Vol. 28, No. 1,
 January 1985, pg. 34 - 52
• History
 • Project started in 1976
 • Prototype processing element completed in 1981
 • Constructed 1 million element structure store in 1986
• Characteristics
 • Each processing element (PE) is a ring-like structure
 • Machine is expanded by "layering" PE rings
 • PE's intercommunicate via an exchange switch
 • Successive levels of distribution, buffering, arbitration
 • Tokens contain routing information in name field
 • Buffering mitigates effects of message interference
 • Allows routing around fault processing elements
 • Exchange switch also provides external I/O interfaces

PE

SS

PE

Output Input

Processing element (PE)

• Each processing element is a four stage pipeline
• Units are internally synchronous
• Inter-unit communication is asynchronous
• All datapaths are parallel
 • Sizes of tokens and packets are fixed
 • Packet is 166 bits wide!
• Token queue
 • Provides rate balancing
 • FIFO buffer containing up to 32K tokens
• Matching unit
 • Matches incoming tokens for dyadic operations
 • Efficient implementation is crucial
 • Sparse VM with <destination,tag> pair as address
 • Hardware uses a hashing mechanism (vs. associative)
 • If addresses cell is empty (match fails), store token
 • If cell contains token, send both tokens to fetching unit
• Fetching unit
 • Combines tokens with node info into executable packet
 • Node can specify one or two destinations for result
 • Prototype accomodates up to 64K nodes
• Functional unit
 • Preprocessor (PP) interpets tag-handling instructions
 • Functional elements (FE) are microprogrammed

 • Instruction times: 3 µs min, 6µs ave, 30 µs max
 • Throughput rate is irregular (need rate balancing)

Token
queue

Matching
unit

Token
memory

Fetching
unit

Node
memory

FE

FE

FEPP

Structure store (SS)

Data structures

• A data structure may be transmitted over an arc
• Transmittion is one element per token at a time
• Different elements are distinguished by index field in tag
• Elements can be produced and accessed in any order
• Allows concurrent processing of structure elements
• Streams

 • Elements are produced and processed in order
 • Non-strict

 • Elements can be read before producing complete stream
 • Use tag manipulation to gain efficiency

• Structure copying useful only for small data structures
• Fixed-size structures can be stored in structure store

• Create-structure operation
 • Reserves memory area
 • Returns pointer to structure
• Write-element operation
 • Stores value part of a token
 • Tag and destination are not stored
• Read-element operation
 • Returns value of an element if it is available
 • Otherwise (not available)
 • Append request to list of pending read requests
 • Fulfill request when the element is written
 • Allows storage of non-strict structures
• Garbage collection (via reference counters)

