Topics in computer architecture

Utah data-driven dataflow architecture

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1990-2013 Paul J. Drongowski

von Neumann organization

+ Most prevelant computer architecture
« Single central processing unit (CPU)
- Central clock
- CPU executes instructions in step with clock
- CPU is the system master
« Control and communications center for entire system
* Primary memory
- Linearly addressable array of binary words
- Each word is a fixed size
« CPU - memory channel
- Set of parallel information paths
- Exchange control signals, addresses, data
- Sequential operation
- Set control for read, send address, receive data
- Set control for write, send address and data
- Address is an index into the linear memory array
Programmlng
» Instructions and data
* Binary codes
- Stored in primary memory
- Elemental operations on elemental operands
* Program counter sequences instructions
* (Un)conditional branches for loops and decisions
* Arithmetic is parallel binary

Addresses
Data
Control

Processor Memory

Some exceptions

 Burroughs B5500, etc. stack addressable storage
 Burroughs B1800 does not have fixed logical word length
 IBM 370 series has special I/0 channels

- CDC Star and Cray have multiple arithmetic processors

Self-consistency (harmony)

« "Recursive machines and computing technology,"

V.M. Glushkov, et al., IFIP Information Processing '74,
North Holland Publishing, 1974.

- von Neumann principles are self-consistent (re-enforcing)
- Central clock and sequential transfers through channel
 PC steps sequentially through linear memory array
* Fixed word width and parallel arithmetic

* Revision of one or two principles will destroy harmony

« Intuitively self-consistency is a "good fit" of principles

Improving von Neumann speed

+ Use faster components
* Increase speed of CPU, memory, channel
- Bounded by physical limitations
 Exploit locality
- Keep operands in local cache or general registers
* Reduces number of channel operations
- Concurrency
* Increase number of processor - memory channels
¢ Multiple address and data streams
¢ Typically found in vector supercomputers
* Increase input/output concurrency
¢ Perform computation and I/0O simultaneously
¢ Add "direct memory access" channel
¢ Increases speed of bulk data transfers
» Pipelining
¢ Degree of concurrency limited by number of stages
¢ Pipe disrupted by change in control flow
¢ Disruptions due to data dependency hazards
 Synchronization and arbitration must be provided
¢ Processes (and devices) must co-ordinate
¢ Interrupts are a synchronization mechanism
¢ Would like to virtualize devices into OS processes

Further problems

- Gap between machine and HL programming language
¢ Implement features of HLL in hardware
¢ Semantic clash
¢ Recursion is usually expensive
- Linear organization does not fit application data model
¢ Leads to construction of sophisticated storage managers
- Sequential centralized control
¢ Complicates operating system design
¢ Processes must be forced into single instruction stream
¢ Nondeterministic effects must be suppressed
¢ Inhibits extensibility
- Throughput depends on component speed
¢ Wire delay is now dominant
¢ Compounded by chip partition

Recursive machine principles

 No limit on complexity of operators and operands
¢ Operands may be numbers, strings, vectors, whatever
¢ New types recursively mapped to primitive structures
¢ Implies a "procedural" data model (i.e. executable data)
* Program elements executed when operands are available
¢ Use memory associativity to detect "ready" elements
- Memory structure is reprogrammable
¢ Convert data and programs to internal form
¢ New types and machines are recursively definable
¢ One level implemented in terms of other levels
* No limit to number of machine elements
¢ Performance tuning by adding and removing elements
¢ Replace broken machines dynamically
- Organization is flexible, re-programmable
¢ Communication switches needed between RC elements
¢ Switches are programmable
¢ Note: An RC element is a processor-memory pair

Data driven dataflow computing

- Initiate activity when necessary information is available
- Example: (a1 b) + (c £ d)

N

. DDthatarow program is a cyclic bipartite directed
grap
- Graph vertices can be divided into two subsets
- All edges in graph connect only the two subsets
- No edge connects two vertices within same subset
- Cell
- Graph node (vertex)
- Operation to be performed
- Operation determines number of inputs and outputs
- Operation determines the type of arguments accepted
- Arc
+ Connects a producer cell to a consumer cell
- Arc is a FIFO queue of (conceptually) inifinite length
- Carry messages called tokens
- Message can be almost any data structure
- Firing rule
- Set of inputs that govern firing is a firing set
- Cell is fireable when firing set is satisfied
- May fire when data is availabe at all inputs in firing set
- To fire, remove item from head of each input queue
- Remove tokens only from firing set
- Compute the result
- Send result item on outgoing arc(s)

Characteristics

- Concurrency
 Horizontal (MUL's are independent)
* Pipelined (due to FIFO queues between cells)
- May be exploited if multiple functional units available
« Maximally parallel
 Functional program
- Data is a value not a storage location (state)
* Not history dependent
 Result depends solely on input values
 No side-effects making verification easier
* Nonprocedural program
 Execution order not strictly dependent on lexical order
* Order is dependent on functional relationships
 Can be described denotationally
« von Neumann programming
- Control driven; rigidly sequences
« Uses explicit addresses
* Program directly manipulates memory state
- Tight binding between data and memory location

move a, register-0

multiply b, register-0

move c, register-1

multiply d, register-1

add register-1, register-0
move register-0, result

- Data driven programming
 Functional and nonprocedural
* No memory cells or addresses
- Memory is embedded in store semantics of arcs
- Only data dependency affects sequencing

Demand driven dataflow

- Two types of messages are sent over arcs
- Demands flow from outputs back to inputs
* Result values flow forward in data driven

- Advantages
 Avoids unnecessary computation
- Example: if - then - else
 Data driven computes all expressions
- Either then or else part will be discarded
- Demand driven computes only needed value
- Conserves physical computing resources
- Can "represent" infinite data structures (objects)
 Provide a net to compute an infinite stream
 Just demand next value in stream when needed
- Lazy evaluation
 Postpone generation of item until needed
- Potentially an item may never be needed
* Again, this conserves physical computing resources
- Example: Lazy cons (LISP)
 cons joins two subtrees into one tree
« Often one subtree is immediately discarded
* Lazy cons waits until needed subtree is selected
* Disadvantages
« Twice as many messages must be sent
- Data driven - demand always exists at cell outputs

Co-ordination of parallel processing

. Programs must co-ordinate exchange of information
* Program execution is explicitly sequenced
- System level behavior is asynchronous
 Mixture causes a conceptual mismatch
- Example: Interrupt mechanism vs. virtual device process
- Dataflow naturally co-ordinates processes
- Logical and physical change of context is not needed

Centralized systems

- Current multiprocessors engender "global state" approach
- All processes share common global state

* Runs counter to "divide and conquer" software design

- Centralized systems often use a common clock

» Clock must be distributed to system components

- Clock skew is sensitive to distance between components
- Longer propagation time means slower performance

- Novel physical packaging has its limitations

- Expansion difficult due to synchronous time constraints

Decentralization and buildability

- Extensibility
¢ Incrementally add more processing modules
¢ Addition should not require change to operating system
¢ Plug in new modules without "tuning"
¢ Extensions available in small quantums
- Characteristics of a fully distributed system
¢ No module can determine total system state
¢ No module can enforce simultaneity in other modules
- Key is decentralization and asychronous operation

Implementation technology

« von Neumann era
» Vacuum tube technology
* Minimize components
« Active circuitry is expensive
* Delay of circuitry dominated; wire delay insignificant
- "Hardware is expensive, software is cheap"
« Economic principles not valid anymore

VLSI technology

» Production cost for custom chip is $80,000 to $300,000
* Production goal

« 250,000 parts at $7 to $10 per part

- Part must be used in large volume

- Keep number of distinct part types low
- Speed (dominated by signal drive into conducting path)

* Delay proportional to signal path capacitance

- Off-chip 100pF versus 1pF on-chip fan-out

« Perform as much function as possible on-chip

- Keep on-chip wires short

- Exploit physical locality!
* Number of pins

- Manufacturing cost is roughly linear with pin count

- Can decrease times by time division multiplexing

- Performance penalty is incurred by multiplexing

- Disadvantages of increased pin count

 Decreased yield due to bonding problems
 More silicon area for connection pads and drivers

- Other advantages

* Increased system reiliability due to reduced part count

 Decreased (system level) power consumption

- Lower maintenance cost through chip replacement
* Try to achieve very high logic to pin ratio

Data Driven Machine 1 (DDMH1)

- Alan L. Davis, University of Utah
 Low level machine language (DDN's)
- Goals and principles
« General purpose computing
- Improve performance through concurrency
* Potential concurrency in program must be very high
- Large number of function units must be available
- DDN's contain "fine grain" concurrency
- Compatible with VLSI technology
 Use large number of identical processing sites
 Each site should ideally be one part type
- Extensible
* Increase performance by adding plug-in modules
* Distributed, asynchronous control
« Hierarchical organization
- Simplifies conceptual complexity at each level
« Verification by induction for uniform systems
- Natural superior-inferior relationship
* Helps resolve resource management
* Leads to a physical tree of processing modules
Loglcal extensibility
* Recursive hierarchy
« Structure is same at all levels of hierarchy
* Implies that same module can be used at all levels
* Physical recursion ends at logically deepest resources
« Fan-out from level to execute independent operations
 Depth used to pipeline operations

Architecture

- Architecture is recursively organized PSE's
* Processor - store element (PSE)
- Fundamental computational unit
» Substructure
* Processor module (P)
« Atomic processor (AP)
- Eight PSE at next lower level of hierarchy
* Local storage module (S)
- PSE can execute any machine language program
« Atomic processor module (AP)
« No substructure (i.e., no lower PSE's)
- Bottom of hierarchy consists solely of AP's
- Atomic storage unit (ASU)
 No substructure
- Size of store is arbitrary
- Higher level stores should be slower and larger
- Ability of parent should be greater than sum of children

Hierarchy

* All AP's are identical regardless of level
* Higher levels are more powerful
- Higher levels have more substructure
- Implies more internal concurrent processing capability
* Non-recursive structure
* Physical tree of PSE's
- Possibility of eight children per PSE
- Leaf nodes are just atomic processors and storage units
* Depth of the tree is arbitrary; fan-out is fixed at eight
« Extend machine by adding more levels
« Each PSE is asynchronous so no tuning is needed
- Communication is direct; topology is fixed

PSE structure

* Inter-PSE links are direct
- PSE's exchange variable length character string msg's
- Upward messages are switched like an arbiter
- Downward messages contain header for distribution
- Hardware switch is independent unit
- Serial communications
 More applicable for VLSI implementation (pin count)
- Messages are next fixed width information units
 Permits substitution of other module implementations
* Local performance is lost
* Try to regain performance through high parallelism
 Physical queues placed between levels of PSE's
- Facilitate pipelining
* Increase physical module independence
- Sender must only wait when queue is full
- Choose queue size for average message length
« System will not deadlock
- Strict hierarchical control
- Restricted process structure
* Physical link characteristics
- Two wire request-acknowledge control link
- Four wire character-width data bus

Y f

1Q 0Q
v }
AP <+—»| ASU
v }
Switch

FYTYYY

Atomic processor

- DDN to be loaded arrives as a message via the 1Q
- Data items also arrive via the 1Q
- Data items has two fields
* Destination identifier
* Item value
- AP interprets the destination identifier
- If resident in ASU, route to local cell
 Otherwise, pass to next switch
- If destination cell becomes fireable, fire it
- Use incoming data item as needed
- Avoids unnecessary store operation in ASU
+ AP produces a result with two fields
* Destination of the result message
* Result value
« If result destination is resident, then send it to the AQ
 Otherwise, send the result message to the OQ
« Eventually, process the AQ (agenda queue)
* Process like arriving messages from the 1Q
- When AQ is empty, then wait on the IQ
- |1Q before AQ strategy
* Do as much locally as possible before new work

* Input queue (IQ) <*—— External

> Output queue (OQ) —— External
AP

i T

— Agenda queue (AQ)

ASU

Atomic storage unit

 Use the Barton Storage Model (TSM)
* File system with the following commands
* Initialize
« Skip - cursor skips over the current field under cursor
- Insert - inserts character or file before current position
- Delete - delete the character or file at cursor position
- Assign - assigns character (file) to current character (file)
- Read - reads the character or file selected by cursor
- Head - position to leading (' of parent field
- Shift - increment the cursor
 Alndex
* Absolute index
* Index from first character in the store
* RIindex
* Relative index
* Index from current cursor position
« ASU implementation
* 4K by 4 bit character store using RAM chips
- Data exchanges use four-cycle self-timed handshake
 "Mapping unit" can speed up indexing operations

Comments on DDM1

- DDM1 has lots of internal concurrency

* Internal state is impossible to save and restore

* Transfer fields, not characters

* Vector processing is sensitive to number representation
« ASU design was not easily extensible in size

* Fixed tree structure causes load imbalance

* Not enough empirical data on decomposition overhead
- Failure of PSE will cause failure of subtree

« Certain SP-graphs cause less than full pipelining

Manchester dataflow machine

- "The Manchester prototype dataflow computer," J.R. Gurd,
C.C. Kirkham, and |. Watson, CACM, Vol. 28, No. 1,
January 1985, pg. 34 - 52

- History
* Project started in 1976
* Prototype processing element completed in 1981
« Constructed 1 million element structure store in 1986

- Characteristics
 Each processing element (PE) is a ring-like structure
« Machine is expanded by "layering" PE rings
« PE's intercommunicate via an exchange switch

* Successive levels of distribution, buffering, arbitration
« Tokens contain routing information in name field
- Buffering mitigates effects of message interference
« Allows routing around fault processing elements
- Exchange switch also provides external I/O interfaces

Output Input

Processing element (PE)

- Each processing element is a four stage pipeline

* Units are internally synchronous

* Inter-unit communication is asynchronous

« All datapaths are parallel

- Sizes of tokens and packets are fixed

- Packet is 166 bits wide!

- Token queue

* Provides rate balancing

* FIFO buffer containing up to 32K tokens

« Matching unit

- Matches incoming tokens for dyadic operations

- Efficient implementation is crucial

- Sparse VM with <destination tag> pair as address

- Hardware uses a hashing mechanism (vs. associative)
- If addresses cell is empty (match fails), store token

- If cell contains token, send both tokens to fetching unit
* Fetching unit

- Combines tokens with node info into executable packet
* Node can specify one or two destinations for result

* Prototype accomodates up to 64K nodes

 Functional unit

* Preprocessor (PP) interpets tag-handling instructions
 Functional elements (FE) are microprogrammed

* Instruction times: 3 us min, 6us ave, 30 us max
- Throughput rate is irregular (need rate balancing)

FE
Token Matching Fetching
—| queue unit unit PP FE
vy ¢+ 4 FE
Token Node
memory memory

Data structures

+ A data structure may be transmitted over an arc

- Transmittion is one element per token at a time

- Different elements are distinguished by index field in tag

 Elements can be produced and accessed in any order

+ Allows concurrent processing of structure elements

- Streams
- Elements are produced and processed in order
 Non-strict
- Elements can be read before producing complete stream
- Use tag manipulation to gain efficiency

Structure store (SS)

« Structure copying useful only for small data structures
* Fixed-size structures can be stored in structure store
- Create-structure operation
- Reserves memory area
 Returns pointer to structure
« Write-element operation
- Stores value part of a token
- Tag and destination are not stored
* Read-element operation
 Returns value of an element if it is available
- Otherwise (not available)
* Append request to list of pending read requests
* Fulfill request when the element is written
- Allows storage of non-strict structures
- Garbage collection (via reference counters)

