
Topics in computer architecture

Von Neumann -- The IAS machine

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1990-2013 Paul J. Drongowski

von Neumann's computer

• "Preliminary discussion of the logical design of an
 electronic computing instrument," A.W. Banks, H.H.
 Goldstine, J. von Neumann, 1946
• "The Computer from Pascal to von Neumann, Herman H.
 Goldstine, Princeton University Press, 1972
• "The Origins of Digital Computers," Brian Randall (editor),
 Springer-Verlag, 1975
• "Computer Structures: Readings and Examples,"
 D. Siewiorek, C.G. Bell and A. Newell, MacGraw-Hill,
 1982 (2nd edition)

General

• Institute for Advanced Studies (IAS)
• Referred to as the "IAS machine"
• Smithsonian Museum
• Application was numerical mathematics
• Vacuum tube electronics (approximately 2,000 tubes)
• Memory
 • Cathode ray storage tube
 • 4096 40-bit word memory
 • 25 microsecond access time
• Speed
 • 0.5 MHz clock rate
 • 20,000 operations per second
• Performed one multiplication in 600 microseconds
• Just for fun - a comparison
 • Atari 800XL
 • $120 (retail price)
 • 6502 single chip processor (3.5 MHz clock)
 • 64Kbytes of memory
 • 344 8-decimal digit multiplies per second
 • 3 millesecond multiplication time

Structure

• Four major units
• Arithmetic unit
 • Binary, parallel arithmetic
 • Decimal too expensive; conversion is simple
 • Performs primitive arithmetic and logical operations
 • Trade-off: Native versus coded operations
 • Native: Fast, requires more hardware
 • Coded: Slow, less hardware in implementation
 • Integer arithmetic only; FP too expensive
• Memory
 • Flip / flop (tube) memory was regarded as impractical
 • Delay lines (dynamic memory) were rejected
 • RCA Selectron tubes
 • 4096 bits per tube
 • 40 tubes in parallel to obtain a word
 • Use "function tables" to address memory
 • Buffer address and data in flip / flop memory
 • Memory was parallel, random access
 • Serial memory is bit at a time and slower
 • EDVAC was serial; used serial delay line memory
• Control unit
 • Compromise between ISA and hardware complexity
 • Instructions consist of:
 • Operation code
 • Memory addresses and mode bits
 • Sequential instruction execution (program counter)
 • Unconditional and conditional branches
 • Needed for decision making
 • Loops for iterative execution
 • System timing derived from a single clock
• Input and output devices
 • Synchronous input / output
 • Programmed data transfer

Instruction set

• Single address per instruction
 • Only small amount of memory is used for addresses
 • Read operand from memory, leave result in AC
• Two instructions stored per 40-bit memory word
 • Provided one instruction lookahead
 • Reduced number of instruction fetch operations
• Basic principle - Incorporate only those features that:
 • Are necessary to have a complete system, or
 • Occur very frequently in mathematical practice

register AC<39:0>, R<39:0>, CC<11:0>
memory M[4095:0]<39:0>

AC ! M[x]
AC ! " M[x]
AC ! abs M[x]
AC ! " abs M[x]

AC ! AC + M[x]
AC ! AC " M[x]
AC ! AC + abs M[x]
AC ! AC " abs M[x]

R ! M[x]
AC ! R # M[x]<78:40> ; R ! R #
M[x}<39:0>
R ! AC ÷ M[x]; AC ! AC mod M[x]

CC ! M[x]<39:20>
CC ! M[x]<19:0>

(AC $ 0) % cc ! M[x]<39:20>
(AC $ 0) % cc ! M[x]<39:20>

M[x] ! AC
M[x]<39:26> ! AC<39:26>
M[x}<19:6> ! AC<39:26>

AC ! AC # 2
AC ! AC ÷ 2

Registers
Primary memory

Load AC from memory
Load complement
Load absolute value
Load negative

Add
Subtract
Add absolute value
Subtract absolute value

Load R from memory
Multiply
Divide

Jump (left - hand)
Jump (right - hand)

Conditional jump
Conditional jump

Store AC to memory
Store address (left - hand)
Store address (right - hand)

Left shift
Right shift

Programming

• Instructions and data stored together in memory
• Instructions and data are both binary codes
• Instruction format
 • Bits 25 (5) through 20 (0) are opcode / mode bits
 • Bits 39 (19) through 26 (6) are address
• Self-modifying code
 • Instructions can be manipulated as data
 • Instructions can be changed to point to new operands
 • Used to pass subroutine arguments (IAS)
 • Eventually replaced by index registers
 • Modify code through store address instructions
• Arguments against self-modifying code
 • Difficult to debug
 • Cannot have reentrant ("pure") procedures

von Neumann organization

• Most prevelant computer architecture
• Single central processing unit (CPU)
 • Central clock
 • CPU executes instructions in step with clock
 • CPU is the system master
 • Control and communications center for entire system
• Primary memory
 • Linearly addressable array of binary words
 • Each word is a fixed size
• CPU - memory channel
 • Set of parallel information paths
 • Exchange control signals, addresses, data
 • Sequential operation
 • Set control for read, send address, receive data
 • Set control for write, send address and data
 • Address is an index into the linear memory array
• Programming
 • Instructions and data
 • Binary codes
 • Stored in primary memory
 • Elemental operations on elemental operands
 • Program counter sequences instructions
 • (Un)conditional branches for loops and decisions
 • Arithmetic is parallel binary

Processor Memory

Addresses

Control

Data

Some exceptions

• Burroughs B5500, etc. stack addressable storage
• Burroughs B1800 does not have fixed logical word length
• IBM 370 series has special I/O channels
• CDC Star and Cray have multiple arithmetic processors

Self-consistency (harmony)
• "Recursive machines and computing technology,"
 V.M. Glushkov, et al., IFIP Information Processing '74,
 North Holland Publishing, 1974.
• von Neumann principles are self-consistent (re-enforcing)
 • Central clock and sequential transfers through channel
 • PC steps sequentially through linear memory array
 • Fixed word width and parallel arithmetic
• Revision of one or two principles will destroy harmony
• Intuitively self-consistency is a "good fit" of principles

Improving von Neumann speed

• Use faster components
 • Increase speed of CPU, memory, channel
 • Bounded by physical limitations
• Exploit locality
 • Keep operands in local cache or general registers
 • Reduces number of channel operations
• Concurrency
 • Increase number of processor - memory channels
 ! Multiple address and data streams
 ! Typically found in vector supercomputers
 • Increase input/output concurrency
 ! Perform computation and I/O simultaneously
 ! Add "direct memory access" channel
 ! Increases speed of bulk data transfers
 • Pipelining
 ! Degree of concurrency limited by number of stages
 ! Pipe disrupted by change in control flow
 ! Disruptions due to data dependency hazards
 • Synchronization and arbitration must be provided
 ! Processes (and devices) must co-ordinate
 ! Interrupts are a synchronization mechanism
 ! Would like to virtualize devices into OS processes

Further problems
• Gap between machine and HL programming language
 ! Implement features of HLL in hardware
 ! Semantic clash
 ! Recursion is usually expensive
• Linear organization does not fit application data model
 ! Leads to construction of sophisticated storage managers
• Sequential centralized control
 ! Complicates operating system design
 ! Processes must be forced into single instruction stream
 ! Nondeterministic effects must be suppressed
 ! Inhibits extensibility
• Throughput depends on component speed
 ! Wire delay is now dominant
 ! Compounded by chip partition

Recursive machine principles

• No limit on complexity of operators and operands
 ! Operands may be numbers, strings, vectors, whatever
 ! New types recursively mapped to primitive structures
 ! Implies a "procedural" data model (i.e. executable data)
• Program elements executed when operands are available
 ! Use memory associativity to detect "ready" elements
• Memory structure is reprogrammable
 ! Convert data and programs to internal form
 ! New types and machines are recursively definable
 ! One level implemented in terms of other levels
• No limit to number of machine elements
 ! Performance tuning by adding and removing elements
 ! Replace broken machines dynamically
• Organization is flexible, re-programmable
 ! Communication switches needed between RC elements
 ! Switches are programmable
 ! Note: An RC element is a processor-memory pair

