
Computer and VLSI design

Control, finite state machines, microprogramming

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1987-2013 Paul J. Drongowski

Control implementation styles

• Finite state machine (FSM)
 • "Random logic" or "hardwired" approach
 • Draw state diagram for ISA instruction interpretation
 • Perform state assignment
 • Define state table
 • Implement sequential logic circuit
 • Implementation is usually ill-structured and not regular
 • PLA can make design more regular and structured

• Microprogramming
 • Each control step can be represented as an instruction
 • These control instructions can be stored in a memory
 • Technique developed by Maurice Wilkes in 1951
 • Terminology
 ! Microprogram
 ! Microinstruction
 ! Emulation (interpeter for the ISA)
 • Control store
 ! Microprogram memory
 ! May be writeable (not just read-only)
 ! Update to correct errors

• Two styles of microprogramming
 • Vertical
 • Horizontal

FetchInterrupt Decode

Execute

Int = 1 Int = 0

Random logic controller

• Consider the state diagram below

• Four state machine
 • Fetch state - get instruction from memory
 • Decode state - decode new instruction
 • Execute state - execute decoded instruction
 • Interrupt state - perform trap sequence
• Signal "Int" is an external input
 • Signal is asserted when an interrupt is requested
 • Go to Interrupt state if asserted
 • Otherwise, go to Decode state
• First step in controller design is state assignment

 • Fetch ! 0

 • Decode ! 1

 • Interrupt ! 2

 • Execute ! 3
• Redraw the state diagram with states assigned
• Assume two flip / flop (bit) representation of state

FetchInterrupt Decode

Execute

Int = 1 Int = 0S = 2

S = 3

S = 1S = 0

State table form

• After state assignment, build equivalent state table
• Each row in table represents:
 • Current machine state, and
 • Condition input combination

State

0
0
1
2
3

Int

0
1
X
X
X

S1

0
0
0
1
1

S0

0
0
1
0
1

• S1 and S1 represent high and low bit of the machine state
• "X" terms denote "don't care" condition
• Don't care terms specify input conditions to be ignored
• Each row will become a product term

 • ~Int ! ~S1 ! ~S0 (First row term)

 • Int ! ~S1 ! ~S0 (Second row term)

 • ~S1 ! S0 (Third row term)

 • S1 ! ~S0 (Fourth row term)

 • S1 ! S0 (Fifth row term)
• Note that ignored inputs don't appear in product term
• The product term will enable the rest of the table

FetchInterrupt Decode

Execute

Int = 1 Int = 0S = 2

S = 3

S = 1S = 0

• For a given state and input:
 • Select a next state value
 • Generate control signals to datapath

Filling out the table

State

0
0
1
2
3

Int

0
1
X
X
X

S1

0
0
0
1
1

S0

0
0
1
0
1

Next1

0
1
1
0
0

Next0

1
0
1
0
0

Control

1010101
0001100
0100101
0111110
1110001

• Next state values are feed back through state flip / flops
• Next1, Next0, Control ouputs are formed by OR logic

FetchInterrupt Decode

Execute

Int = 1 Int = 0S = 2

S = 3

S = 1S = 0

• Inputs to the table are variables in product terms (AND)
• Outputs are formed by OR'ing across columns
• Thus, each output signal is a sum of products expression
• Programmable logic array (PLA)
• The table can be implemented directly in a PLA

Microprogramming styles

• Horizontal microprogramming
 • Low degree of encoding
 • Apply microinstruction bits directly to control inputs

 • No encoding ! less control delay
 • Results in very long microwords (32 to 300 bits!)
 • Exploitable parallelism
 • Theory to optimize microprogram size

• Vertical microprogramming
 • High degree of instruction encoding
 • Instructions resemble ordinary (ISA) programming
 • Microwords are short (16 to 32 bits)

 • Short microword ! smaller control store
 • Typically cannot exploit as much parallelism

• Two-level control store (hybrid)
 • Take advantage of redundancy in control store
 • Short microinstruction indexes table of nano

instructions
 • Nanoinstructions are unique control states

 • Apply nanoinstructions directly to control inputs
 • Example: Motorola 68000
 ! Single level store: 52,400 bits
 ! Two level store (total): 30,550 bits

Nanoinstruction

µ

µ

Microinstruction design
• Make a list of all control signals in the datapath
 ! Signal name(s)

 ! Operation ! signal value table
• Add sequencing control signals

 ! Next µ instruction address (branch
address)
 ! Branch condition selector

• Draw µ word format

 ! Assign signals to µ instruction fields

ALU

MUX

X T

R

S

ALUOp

LoadR

SelectLoadS

LoadT

IncrT
LoadX

LoadX
 0: No operation
 1: X " new
value
LoadS
 0: No operation
 1: S " new
value
LoadT
 0: No operation
 1: T " new
value
IncrT
 0: No operation

LoadR
 0: No operation
 1: R " ALU
result
ALUOp
 0: No operation
 1: Add
 2: Subtract
 3: AND
 4: etc.
Select
 0: Pass X
 1: Pass T

Microinstruction encoding

LoadX
 0: No operation
 1: X ! new
value
LoadS
 0: No operation
 1: S ! new
value
LoadT
 0: No operation
 1: T ! new
value
IncrT
 0: No operation

LoadR
 0: No operation
 1: R ! ALU
result
ALUOp
 0: No operation
 1: Add
 2: Subtract
 3: AND
 4: etc.
Select
 0: Pass X
 1: Pass T

• Encode each graph block into one µ instruction
• Find datapath elements participating into transfers
• Select control signal values for each transfer

LoadX
0

LoadS
0

LoadT
0

IncrT
0

LoadR
1

ALUOp Select Branch

10 0 1 01

Encoding example

R ! S +

Two - way branch

Levels of decoding

• ISA with multiple operation fields
• SP.3 example
 • Instruction tag field {stack, literal, op and desc call}
 • Multiple stack operations

Tag Op-code

• Two levels of decode

Branch on Tag field

Branch on Op-code

• One level of decode

Branch on Tag and Op-code

Stack operations

• Move instruction
 • Most frequently executed instruction
 • Make instruction as fast as possible
 • Two level approach
 • Decode and identify move operation
 • Decode and identify addressing mode
 • Execute
 • One level approach
 • Decode and identify move absolute
 • Execute
 • Considerable savings will accrue

Overall design style

• Central, synchronous control
• Two-phase, non-overlapping clock
• Separate control and datapath subsystems
 • Condition signals
 ! Datapath state to be sensed
 ! Controller will react to these values
 ! List of values affecting control flow (sequencing)
 • Control signals
 ! Evoke operations and transfers in the datapath
 ! Effectively a list of all building block control inputs

• Microprogrammed control
 • Each control step is a microinstruction
 • A microinstructions is a bundle of control values
• Levels of virtual (abstract) machines

Controller Datapath

Control signals

Conditions

Diagnostic program

ISA emulator (microcode)

Microarchitecture (datapath + control)

Datapath + control simulator

Host machine (VAX/Unix etc.)

Programmable clock

• Performance limited by slowest component
• Make clock speed selectable
• Choose the fastest speed possible for a transfer

Microinstruction

Clock signalClock
Speed
 0: Fast
 1: Slow

• Two or more speeds

45 nsec

195 nsec

• Fixed speed versus programmable

Short operation

R !
S

Long operation

R ! S "
R

Fixed
195 nsec

Fixed
195 nsec

Programmable
45 nsec

Programmable
195 nsec

Pipelining

• Perform two or more operations concurrently
• Overlap two or more operations
• Usually later stages of pipe consume results of earlier stages

Instruction lookahead

Fetch Execute

Fetch Execute

Berkeley RISC machine

SPARC pipeline

Fetch Compute Store

Fetch Compute Store

Fetch Compute Store

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

• Fetch: Get next instruction in sequence (IP + 1)
• Compute: Read dual port register file and compute result
• Store: Write result to destination register

Pipeline problems

• Hazards
 • Data dependencies
 • Control dependencies
 • Collisions (resource conflict)

• Data dependency
 • Problem: Result is needed before it is stored
 • Example: Berkeley RISC
 • Solution: Detect hazard and forward result

• Control dependency
 • Problem: Branch occurs after prefetch
 • Example: Berkeley RISC and SPARC
 • Solutions
 • Flush and refill pipeline
 • Fill pipeline with no-op instructions
 • Delay the effect of the branch
 ! Execute instructions already in pipe
 ! Branch late
 ! Compile code to use "extra" instruction effectively
 ! Can successfully find work in 90% of the cases

• Collisions (resource conflicts)
 • Two instructions need the same resource
 • Detection and resolution
 • Static
 ! Usually detect at decode stage
 ! Conservative approach - hold until ready
 • Dynamic
 ! Let instruction proceed
 ! Detect and resolve at point of conflict
 • Usage counters
 • Scoreboarding

