Computer and VLSI design

Control, finite state machines, microprogramming

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1987-2013 Paul J. Drongowski

Control implementation styles

* Finite state machine (FSM)
 "Random logic" or "hardwired" approach
- Draw state diagram for ISA instruction interpretation
 Perform state assignment
- Define state table
- Implement sequential logic circuit
 Implementation is usually ill-structured and not regular
* PLA can make design more regular and structured

* Microprogramming

- Each control step can be represented as an instruction
* These control instructions can be stored in a memory
 Technique developed by Maurice Wilkes in 1951
 Terminology

¢ Microprogram

¢ Microinstruction

¢ Emulation (interpeter for the ISA)
- Control store

¢ Microprogram memory

¢ May be writeable (not just read-only)

¢ Update to correct errors

« Two styles of microprogramming
- Vertical
- Horizontal

Random logic controller

- Consider the state diagram below

Execute

Int=1 Int=0

* Four state machine

* Fetch state - get instruction from memory
* Decode state - decode new instruction
- Execute state - execute decoded instruction
- Interrupt state - perform trap sequence
- Signal "Int" is an external input
- Signal is asserted when an interrupt is requested
* Go to Interrupt state if asserted
« Otherwise, go to Decode state
- First step in controller design is state assignment

* Fetch= 0
* Decode = 1
* Interrupt = 2

* Execute = 3

- Redraw the state diagram with states assigned
- Assume two flip / flop (bit) representation of state

S=3

State table form

- After state assignment, build equivalent state table
- Each row in table represents:

« Current machine state, and

« Condition input combination

State Int S1 SO

W= OO
HJK K K= O
—_—0 O O
_O = O O

- S1 and S1 represent high and low bit of the machine state
- "X" terms denote "don't care" condition

- Don't care terms specify input conditions to be ignored

- Each row will become a product term

* ~Int A ~S1 A ~SO (First row term)

* Int A ~S1 A ~SO (Second row term)
. ~S1 A SO (Third row term)

. S1 A ~SO (Fourth row term)
. S1 A SO (Fifth row term)

* Note that ignored inputs don't appear in product term
 The product term will enable the rest of the table

S=3

Execute

Filling out the table

* For a given state and input:
- Select a next state value
« Generate control signals to datapath

State | Int S1 SO | Nextl Next0 Control
0 0O 0 O 0 1 1010101
0 1 0 O 1 0O 0001100
1 X 0 1 1 1 0100101
2 X 1 0 0 0O 0111110
3 X 1 1 0 0 1110001

A

T

* Next state values are feed back through state flip / flops
* Nextl, Next0, Control ouputs are formed by OR logic

S=3

* Inputs to the table are variables in product terms (AND)

* Outputs are formed by OR'ing across columns

* Thus, each output signal is a sum of products expression
* Programmable logic array (PLA)

- The table can be implemented directly in a PLA

Finite state machines

+ Common class of computations
+ State table is one possible representation
+ Each row in table contains

* Current inputs

» Current machine state

* Next machine state

* New outputs

.’ﬂput-ﬁ This MNext Dutputﬁ
ABC | state | state XY

LLX S0 51 LL
HHX S0 52 LH
XK 51 52 LH
WK 52 53 HL
XL 53 55 HL
XxH 53 51 HH

* Operation
* Find row matching current state and inputs
» Treat X as a "don't care” - ignore that input
+ Assert the specified output values
* Go to the next state making it the new current state
* lterate

Alternate representations

+ State diagram
- States are represented by labelled circles
* An arc shows transition from one state to another
« Arcs are labelled with inputs / outputs

MHL/HL

HHX/LH

XXH/HH
* Pseudo-code
input ABC
output XY
states S0.51.52.53

S0: if ABC = LLX then XY :=LL : goto S|
if ABC = HHX then XY :=LH ; goto 82
S1: XY :=LH ; goto 52
§2: XY := HL ; goto 53
§3:if ABC = XXL then XY :=HL : goto §3
« Are all Mgt Srat b eoerdd?:Goka BK or HLX?
* Horizontal microcode
« Each microinstruction is a "row" in the state table
« State table is held in ROM, RAM or PLA
* Input conditions encoded in addressing or selection

» Often uses next naddress field (next state)
* Lexical analysis / parse table
* Input is next character or symbol in scan
+ States / transitions to recognize composite
constructs like numbers, identifiers, etc.
* Instead of outputs, perform actions like store
character, accumulate digit value, etc.

FSM types

* Mealy machine
* Named after G.H. Mealy
* Qutputs are function of present input and state

—--

Output
logic

Mext
SLALE

lrgic

Yy ¥VvY

IMMEMMCryY

'ey

=

L
—-.
—

* Moore machine
* Named after E.F. Moore
+ Qutput is strictly a function of machine state

—F—
— | Mext %™ .- ™
—h_ &t ag-. e - A LTS h -\..'Ill-l .-F.-'.at-
—* |ogic EMOory ogic
—‘_
—= =
—_—
o= I‘: E}EL W State -
= T‘a_’: — memory -
— logic
» —- -

Flip / flop per state

+ Assign a flip / flop to each state
* Flip / flop is one when state is active (current)
+ Sometimes called "one hot" sequential logic

* Need logic between state flip / flops

T

Inputs This Next | Outputs
ABC | state | state XY

LLX SO S1 | L

HHX SO S5 | H

KHX S1 52 | H

XHX 52 53 HL

XxL 53 S5 HL

XxXH 55 S1 HH

TT+ TT‘J’ TT+
—-— ———= ———-
=y 52 235
Ty Bl

— .
-

'

]
[H

Output combinational logic

'

!

e

Encoded state

» Use an N-bit register to hold current state
+ Assign each state a unique binary number
- Assume master - slave F/F operation

Inputs This Mext | Outputs _

ABC | state| state| XY Assign states
LLX SO 51 LL o0 —=0
HHX SO 52 LH S1 — 1
XK 51 52 LH
wx | s2 | &3 | HL S2—=2
XL S3 53 HL S3 —3
XXH 53 51 HH

B -
E—.-— - L

|
4

[2 bits

+ Two master - slave flip / flops
+ Capture new state on rising edge
* Change out to new state value on trailing edge
* Design problem centers on combinational logic
« Five inputs: A, B, C, Q1, and Q0
* Four outputs: X, Y, D1, and DO
* Four sum of product equations (one per output)
* Equations and logic could be minimized

Encoded state (2)
= Re-write state table with D1, DO, Q1 and Q0

Inputs This Next | Outputs
ABC | D1DO| Q1Q0 XY

LLX L | LH LL
HHX | LL | HL LH
XXX LH | HL LH
XXX HL | HH HL
XXL | HH | HH HL
XXH | HH | LH HH

* Write sum of products equations Q1, A0, X and ¥
Gl = AsBe[NeD0 4 ~[DNeDD 4 DNe[DO & ~CeDNeD0)
Q0 = ~AecBen[Mo R0 & [MeDO + ~ColMeD 4 CeD1eDO
X=[DeDO & ~Co[MeD0 4 CelXe0 = [N
T = AsBeDeD0 4 ~[MeD0 4+ CeDeDO

* Reduce and build gate network for each equation

B
[——]
~[0

-
H =30
-

Programmable logic arrays

+ Often need to implement block of combinational logic
+ Sum of products is really a two-level gate network
* Programmable logic array (PLA)

* Two-level gate network

* Provides a general framework for AND/OR logic

» Separated into AND- and OR-planes

* Framework forms true/complement of inputs

* Program by adding transistors or connections

» Add input and output latches to form FSM
» Advantages

* Programmability, generation tools (CAD)

* Regular, compact layout

Froduct terms -
AND UK
plane "1 plane
-
bt oHe Yty
Inputs Outputs
AND = oR
plane - plane
-
bttt TITYYY
Latches Latches

P 11112

Condition inputs Controller outputs

NOR-NOR PLA

* Typically use NOR-NOR logic
* NAND array is slower
* Long series chain of switches should be avoided
* Need to invert input terms (de Morgan's theorem)
* Not expensive as PLA's usually generate both true
and complement forms of the inputs anyway

P
D —
~D0——

e[} —

[0

=D

} H‘.r.

wie/vjvele

CMOS PLA implementations

+ CMOS VLSI Design, Weste & Eshraghian, pg. 368
+ Complementary gates complicate PLA layout
+ Corresponding n- and p-gates must be connected
* Pseudo-nMOS
* nMOS layout is simpler
+ Complementary gates not connected
* Use p-channel device as pull-up resistor
* Tie p-channel gate to ground; channel always ON
* Requires ratio'd logic; choose L and W carefully
+ Static power consumption much higher
* Dynamic CMOS - 2-phase clocking
+ Latch inputs on Phi-1
+ Latch outputs on Phi-2
* Precharge product term lines during ~Phi-1
+ Set product term lines during Phi-1 (pull-down)
» Approach #1
* Generate internal OR-plane precharge clock
* Must accommodate worst case loading delay
+ Self-timed logic
* Precharge OR-plane when internal clock is low
+ Set output lines when internal clock asserted
» Approach #2
* Insert latch between AND and OR planes
* Latch product terms on Phi-2
+ Latch OR-plane outputs on Phi-1
* Pipeline register puts PLA one cycle behind
* Four-phase clocking
+ Extra intermediate latches
* Must carefully apply timing discipline to design

LE L {i {_L {i
Lf AR 0 R
Lf 1T | |
b O
Lf T
Lf [|

Example OR-plane

& %_ | na
& PN
& i_ i_ i

& ;1_ %_ DA

YooY vy

Q0

Microprogramming styles

* Horizontal microprogramming
- Low degree of encoding
* Apply microinstruction bits directly to control inputs

* No encoding = less control delay

- Results in very long microwords (32 to 300 bits!)
- Exploitable parallelism

* Theory to optimize microprogram size

+ Vertical microprogramming
- High degree of instruction encoding
* Instructions resemble ordinary (ISA) programming
- Microwords are short (16 to 32 bits)

- Short microword = smaller control store
* Typically cannot exploit as much parallelism

« Two-level control store (hybrid)
- Take advantage of redundancy in control store
 Short microinstruction indexes table of nano
instructions
- Nanoinstructions are unique control states
 Apply nanoinstructions directly to control inputs
- Example: Motorola 68000
¢ Single level store: 52,400 bits
¢ Two level store (total): 30,550 bits

W
‘ _|_> Nanoinstruction
w

Microinstruction design
- Make a list of all control signals in the datapath

¢ Signal name(s)

¢ Operation < signal value table
« Add sequencing control signals
¢ Next u instruction address (branch

address)

¢ Branch condition selector

* Draw n word format

¢ Assign signals to u instruction fields

LoadX —»

LoadS —® S

3§

X T <€4— LoadT
<4+— |ncrT
MUX [<¢— Select

<— ALUOp

R |<— LoadR

LoadX
0: No operation
1: X < new
value
LoadS
0: No operation
1: S < new
value
LoadT
0: No operation
1: T < new
value
IncrT

N: NlA ArnAvAa +HAn

LoadR
0: No operation
1: R < ALU
result
ALUOp
0: No operation
1: Add
2: Subtract
3: AND
4: etc.
Select
0: Pass X
1: Pass T

Microinstruction encoding

« Encode each graph block into one u instruction

- Find datapath elements participating into transfers
« Select control signal values for each transfer

LoadX LoadR
0: No operation 0: No operation
1: X < new 1:R < ALU
value result
LoadS ALUOp
0: No operation 0: No operation
1: S < new 1: Add
value 2: Subtract
LoadT 3: AND
0: No operation 4: etc.
1: T < new Select
value 0: Pass X
IncrT 1: Pass T
0: No operation
LoadX | LoadS | LoadT | IncrT | LoadR
0 0 0 0 1
ALUOp Select Branch
0 | 1 1 | 1 | 0

'

Encoding example

R < S+

Two - way branch

Levels of decoding

* ISA with multiple operation fields

« SP.3 example
- Instruction tag field {stack, literal, op and desc call}
 Multiple stack operations

Tag Op-code

* Two levels of decode

Branch on Tag field

Branch on Op-code

* One level of decode

Branch on Tag and Op-code

LLLD 7 B B

Stack operations

* Move instruction

- Most frequently executed instruction

- Make instruction as fast as possible

» Two level approach
» Decode and identify move operation
« Decode and identify addressing mode
- Execute

* One level approach
» Decode and identify move absolute
- Execute

- Considerable savings will accrue

Overall design style

« Central, synchronous control
« Two-phase, non-overlapping clock
- Separate control and datapath subsystems
- Condition signals
¢ Datapath state to be sensed
¢ Controller will react to these values
¢ List of values affecting control flow (sequencing)
- Control signals
¢ Evoke operations and transfers in the datapath
¢ Effectively a list of all building block control inputs

Conditions

Controller . Datapath

Control signals

« Microprogrammed control

- Each control step is a microinstruction

- A microinstructions is a bundle of control values
* Levels of virtual (abstract) machines

Diagnostic program

ISA emulator (microcode)

Microarchitecture (datapath + control)

Datapath + control simulator

Host machine (VAX/Unix etc.)

Programmable clock

 Performance limited by slowest component
* Make clock speed selectable
« Choose the fastest speed possible for a transfer

Speed /

0: Fast | Clock — Clock signal
1: Slow

Microinstruction

« Two or more speeds

/ \ 45 nsec
/ _ 195nsec

* Fixed speed versus programmable

Short operation Fixed Programmable
R — 195 nsec 45 nsec
3

Long operation Fixed Programmable
R—SA 195 nsec 195 nsec

Pipelining

 Perform two or more operations concurrently
 Overlap two or more operations

« Usually later stages of pipe consume results of earlier stages

Instruction lookahead

Fetch

Execute

Fetch

Execute

Berkeley RISC machine

Fetch [Computg Store
Fetch Compute| Store
Fetch [Computel Store

 Fetch: Get next instruction in sequence (IP + 1)

- Compute: Read dual port register file and compute result

» Store: Write result to destination register

SPARC pipeline

Fetch

Decode

Execute

Write

Fetch

Decode

Execute

Write

Fetch

Decode

Execute

Write

Fetch

Decode

Execute

Write

Pipeline problems

- Hazards
- Data dependencies
 Control dependencies
» Collisions (resource conflict)

 Data dependency
* Problem: Result is needed before it is stored
- Example: Berkeley RISC
« Solution: Detect hazard and forward result

- Control dependency
* Problem: Branch occurs after prefetch
- Example: Berkeley RISC and SPARC
- Solutions
* Flush and refill pipeline
* Fill pipeline with no-op instructions
* Delay the effect of the branch
¢ Execute instructions already in pipe
¢ Branch late
¢ Compile code to use "extra" instruction effectively
¢ Can successfully find work in 90% of the cases

« Collisions (resource conflicts)
« Two instructions need the same resource
* Detection and resolution
- Static
¢ Usually detect at decode stage
¢ Conservative approach - hold until ready
* Dynamic
¢ Let instruction proceed
¢ Detect and resolve at point of conflict
- Usage counters
- Scoreboarding

