Computer design

Speed, space and power estimation

P.J. Drongowski SandSoftwareSound.net

Copyright © 1987-2013 Paul J. Drongowski

Building blocks

- · See table in hand-out.
- Size
 - Given in "blocks"
 - Sizes may be scaled for different word widths, # of words
- Current and power
 - Given in mA and mW
 - May be scaled for different word width, # of words
- Delay
 - Given in nanoseconds (ns)
 - No load factor (fan-out effect)
 - Storage time is set-up plus hold time

Floor plans

- Arrangement and size of components on chip
- Keep distance small between communicating components
- Place external interfaces (lengthwise) at chip boundary
- Early floor planning is necessary to set space budgets
 - Intel i860 experience (example)
 - May determine size of cache, etc.
 - Can affect transistor sizing and performance
- Replication
 - Design one block and re-use it many times
- Spread design cost over many instances of block
 Wiring
 - Routed (manually or automatically)
 - Abutment (adjacent placement of blocks)
- Regularity

Speed

- Find minimum clock period
 - Find critical delay path through combinational logic
 - Simply add delays along paths
 - Square root of the sum of the squares
 - Add in set-up and hold time
 - Latches may also have a minimum pulse width
- Delay times can be affected by fan-out
 - Estimate wire capacitance
 - Measure wire width and length
 - Width × length × capacitance per unit area
 - Estimate gate load
 - Count number of (transistor) gates driven
 - Number of gates × capacitance per gate

• Path A: ∇ delay + Δ delay + set-up + hold

Space

- Decrease space to get more chips per wafer
- Wafer processing cost is fixed
- Spread cost of production over more units

\$10,000 / 14

\$10,000 / 56

- Yield
 - Percentage of working chips (no defects)
 - Assume defects are random distributed
 - Poisson distribution
 - N fatal flaws per unit area
 - Let A be chip area
 - Probability of a good chip (zero defects)

$$P_{o}(NA) = e^{-NA}$$

- Keep area small (near 1 / N)
- Space estimation (floor planning)
 - Active area = Σ component areas
 - % active area = Active area / total area
 - % wire area = 1 % active area
 - Some chips may require 80% wire area!

Regularity and wiring

Single cell with wiring

Three by three array

Current and power

- Current estimation
 - Power grid sizing (maximum current density)
 - Total current = Σ component current requirements
- Power estimation
 - Maximum chip operating temperature (ambient)
 - High temperature increases stress
 - High stress accelerates aging
 - Stress reduces reliability
 - Thermal limits of packaging and cooling scheme
 - Air cooling: 0.05 Watts per cm² of board area
 - 20 cm² of board area per 1 cm² chip area
 Chip dissipation should be about 1 Watt

 - 2 5 Watts is easily accomodated with air cooling
 - Total power = Σ component dissipation

Bathtub curve

- Composition of three curves
- Early failure: Rate decreases with time
- Useful life: Random failure (exponential)
- Wearout: Rate increases with time

Components in series

•
$$R(t) = R_1(t) \times R_2(t)$$

• $R(t) \leq min[R_1(t), R_2(t)]$

Components in parallel

• $R(t) = 1 - [1 - R_1 (t)] \times ... \times [1 - R_1]$

Reliability

The reliability of a component at time t is defined as R(t) = P(T > t), where T is the life time of the component. R is called the "reliability function."

Reliability equals the probability that the component is still functioning at time t.

Normal failure model

- Normal distribution
- Most items fail around the mean failure time
- 95.72 percent of failures occur $\pm 2\sigma$

• High reliability \Rightarrow operating time much less than mean

Exponential failure law

- Exponential distribution
- Failure rate is constant
- No "wearing out" or aging effect
- Probability of failure is independent of past history
- Failure may be due to transient external event
- Event occurrence constitutes a Poisson process.

Weibull failure law

- Weibull distribution
- Exponential distribution is a special case
- Failure due to "most severe flaw" of many flaws

MTBF

- Mean time between failure (MTBF.)
- Measurement
 - MTBF = Operating hours / Number of failures
 - Implies a constant failure rate
- Prediction
 - Information required
 - Component failure rates (at temperature)
 - Structure model (series, parallel)
 - Duty cycle
 - Typical system
 - Constant failure rate
 - Series non-redundant design
 - System fails if any one component fails
 - MTBF is reciprocal of sum of individual failure rates
 - MTBF = 1 / $\Sigma \ \lambda$
- Example
 - Failure rates: 4.5×10^{-6} , 2.0×10^{-6} , 7.5×10^{-6}
 - MTBF = 1 / $(4.5 + 2.0 + 7.5) \times 10^{-6} = 71,429$
- Duty cycle
 - Device may have different operating modes
 - Modes may have different failure rates
 - Example: Disk drive can be busy or idle
 - MTBF = 1 / DC_b (λ_b) + DC₁ (λ_f)