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Growth of complexity
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Productivity

•!Software
     • One line of code per hour
     • Designed, debugged, integrated, documented
• Hardware
     • 100,000 transistor design
     • 30 to 40 person-years of effort
     • Roughly 1.5 transistors per hour
• Complexity
     • Software: 100,000 to 1,000,000+ lines of code
     • Hardware: One million transistors

Implications

• Beyond intellectual capability of any single engineer
• Development must be a team effort
• Interpersonal communication is essential
     • Difficult to agree on meaning of common terms
     • "Massive semantic by-pass"
• Better tools and techniques needed
     • Increase productivity
     • Assure correctness and performance
     • Support product throughout lifecycle



Modular design

• Methodology
     • Partition design into subunits
     • Design, code, test, debug subunits in isolation
     • Integrate subunits into (sub)system and test

• Advantages
     • Reduces problem compexity
     • Permits team implementation effort

• Problems and needs
     • Good interface specifications
          • Build to specification
          • Avoid interface errors during integration
          • Test to specification 
     • Good communication
          • Make assumptions explicit
          • Semantic agreement
     • Isolation
          • Transparency
          • Hide design decisions (algorithms, data structures)
          • Enhances maintainability
     • Yo-yo design
          • Capture functionality (top-down)
          • Assure performance (bottom-up)
          • Need "crystal ball" during top-down design
          • Poor choice means expensive fix later



Modules

• A module is a black box
• The contents of the black box are unknown
• A module implements one or more operations
     • Button to invoke an operation
     • Input slot(s) to send arguments
     • Output slot(s) to receive results
     • Completion signal (e.g., indicator light)
• Invocation procedure ("Coke machine" model)
     • User sends arguments to input slots
     • User pushes button
     • Module commences operation
     • When finished, completion is signalled
     • User removes results from output slots
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Software modules

• Access controlled subunits
     • Visible interface
          • Exported procedures that may be called
          • Exported variables and data structures
     • Implementation (transparent operation)
          • Hidden functions
          • Hidden data structures
     • Degrees of access control
          • Public export (anyone can call)
               • Make name global
               • Import name through extern
          • Directed export (calling modules explicit)
               • Explicitly identify operations and legal users
               • Caller imports operation
• Separately coded and compiled

Communications conventions

• Modularity works through conventions
• Compiler enforces / implements convention
• Subroutine call
     • Save working registers
     • Put arguments on stack (or in display)
     • Call and save return address
     • Result on stack or in general register
     • Restore working register values
     • Examples: C or C++
• Message passing
     • Receiving object has a dictionary of methods
     • Send message with method name and arguments
     • Receiver invokes method
     • May reply to sender with result message
     • Examples: Smalltalk or Actors



C++ modularity

• Object-oriented C dialect
• Classes define "types" of objects

• Constructor
    • Initialization
    • Member function with same name as class
    • Storage allocation through new
• Destructor
    • Clean-up after use
    • Function name is ~ class-name
    • Storage deallocation through delete
• Inheritance

class class-name {
    private-variables
public:
    public-interface
} ;

void 
class-name::member-function()
    {
    ...

• Objects are instantiated through declaration

class-name instance-name  

• Apply member function to object instance

instance-name.member-function ( ... ) 



C++ inheritance example

class Register {
  unsigned Value ;
public:
  void Clear() { Value = 0 ; }
  void Load(int NewValue) { Value = 
NewValue; }
  unsigned Read() { return( Value ) ; }
  Register() { Value = 0 ; }
} ;

class Counter : public Register {
public:
  void Incr() { Load(Read() + 1) ; }
  void Decr() { Load(Read() - 1) ; }
} ;
  
class ShiftRegister : public Register {
public:
  void Left()  { Load(Read() << 1) ; }
  void Right() { Load(Read() >> 1) ; }
} ;



Hardware modules

• Monolithic block of circuitry

• Signal ports (physical connection points)
     • Signalling protocol
     • Data representation (unisigned, int, etc.)
     • Timing (assumptions / constraints)
     • Serial versus parallel (low pin-out versus speed)
     • Correct electronic operation
          • Inputs put load on user outputs
          • Outputs must drive user result inputs

• Consistently apply discipline as in software design

• Asynchronous operation
     • Similar to "Coke machine" model
     • Supply arguments, make request
     • Produce results, signal completion
     • Computation can take as long as it needs

• Synchronous operation
     • Sender and receiver both step to common clock
     • Agree to exchange data within time window
     • Produce results within prearranged period

• Communication "styles"
     • Single - phase synchronous
     • Two phase, non-overlapping clock
     • Four cycle handshaking
     • Two cycle handshaking



Synchronous design

• Simple sender-receiver communication

Clock

Sender Receiver

• Simplified timing

• Standard synchronous model

• Synchronous timing constraints
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Synchronous time constraints

• Clock period is the sum of:
     • Compute time
     • Set-up time
     • Hold time (or pulse width if longer.)
• Estimate path delay by summing gate delays.

• Data book delay specification.

Minimum

3 nsec

Typical

5 nsec

Maximum

7 nsec

• Delay varies due to differences in manufacturing 

3 ns 7 ns5 ns

• A mix of slow parts will violate timing constraint.
• Defensive design and manufacturing.
     • Design in a safety margin.
     • Screen components for speed before assembly.
     • Use of worst case is overly conservative.
     • Tune clock after assembly (bad approach.)



Two phase, non-overlapping clock

• Similar to single phase synchronous style

Clock

Sender Receiver

• Timing

Phi-1

Phi-2

Clock period

Logic
Preset

• Operation
     • Two clock phases: Phi-1 and Phi-2
          • When Phi-1 is high, Phi-2 is low
          • When Phi-2 is high, Phi-1 is low
          • Phi-1 and Phi-2 are never  high at the same time
     • Two intermediate periods are needed when both are low
          • First period can accomodate logic delay
          • Second period is idle; make as short as possible
     • Compute during Phi-1; Store during Phi-2

• Control of charge flow

     • Analogous to canal locks (water ! electric 
charge)
     • Open gate to allow charge into combinational logic
     • Close gate and compute
     • Open gate to release and store results
     • Close gate to put system in consistent idle state



Synchronous limitations

Clock

A
250 ns

B
200 ns

DestinationSource

• Speed is limited by slowest component
• Min clock period is determined by max delay
• Max delay path is called "critical delay path"

• Try to make unit B faster
     • Use a better algorithm or faster components
     • Example: Ripple carry adder versus carry-lookahead
• Unit A is over-designed
     • Slow unit A down
     • Try to use fewer components or lower power
• Use different clocking scheme
     • Poly-phase clock
     • Programmable clock periods
• Self-timed systems
     • Allow each unit to execute at its own speed
     • Synchronize when necessary



Synchronous pipeline

• Overlap computations in stages
• Example: Instruction lookahead

Fetch Execute

Fetch Execute

Fetch Execute

1

2

3

Execute unitFetch unit

• Synchronous 3-stage pipeline (below.)
     • A, B and C operate in lockstep
     • Speed is determined by slowest unit (B)

A
200 ns

B
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C
150 ns

Clock



Pipeline problems

• Hazards
     • Data dependencies
     • Control dependencies
     • Collisions (resource conflict)

• Data dependency
     • Problem: Result is needed before it is stored
     • Example: Berkeley RISC
     • Solution: Detect hazard and forward result

• Control dependency
     • Problem: Branch occurs after prefetch
     • Example: Berkeley RISC and SPARC
     • Solutions
          • Flush and refill pipeline
          • Fill pipeline with no-op instructions
          • Delay the effect of the branch
               ! Execute instructions already in pipe
               ! Branch late
               ! Compile code to use "extra" instruction effectively
               ! Can successfully find work in 90% of the cases

• Collisions (resource conflicts)
     • Two instructions need the same resource
     • Detection and resolution
          • Static
               ! Usually detect at decode stage
               ! Conservative approach - hold until ready
          • Dynamic
               ! Let instruction proceed
               ! Detect and resolve at point of conflict
     • Usage counters
     • Scoreboarding



Four-cycle handshake

• Communication elements are on closed loop path
• No request until completion of previous operation
• Permit imposition of arbitrary delay
• Delay insensitive, self-timed signalling convention
• Operation
     • Sender asserts request (to send) line
     • Receiver asserts acknowledge (ready to receive)
     • Sender sets-up data on bus
     • Sender drops request, indicating data ready (valid)
     • Receiver drops acknowledge after data capture
• Disadvantages
     • Slow speed due to two way signalling
     • Two-cycle version eliminates some overhead

Sender Receiver

Req

Data

Ack

Request

Acknowledge

Data
valid



Self-timed systems

• Sources of delay
     • Switching time
     • Wire capacitance
     • Off-chip connections
     • Diffusion delay (quadratic in length)
• Effect of delay
     • Long compute times
     • Clock skew
• Equipotential regions (Seitz)
     • Equalization time is relatively short
     • Synchronous timing constraints are satisfied
• How big should a region be?
• Synchronization failure
     • Synchronous sampling is risky
     • Finite probability of failure
• Use asynchronous signalling between regions
• "Micropipelines," Ivan E. Sutherland, CACM, Volume 32,
   Number 6, June 1989, pg. 720-738. (Turing Award paper.)
     • Request/acknowledge interlock between pipe stages
     • Use delays plus Muller C-element



Self-timed organization

• Let each "time zone" have its own clock
     • Signals will equalize in same short period of time
     • Exploits physical locality
• Communication between self-timed systems
     • Systems must synchronize to communicate
     • Use four-phase signalling or synchronizers
     • Try to communicate infrequently

Equipotential region

Self-timed system

Long wires



Event logic

• Use signal transitions for control
• Example: Request-acknowledge handshake
• AND-merge (join, rendezvous.)
     • Muller C-element
     • If inputs match, copy their state to output
     • If inputs differ, hold previous state
• OR-merge
     • Exclusive-OR gate
     • If an input changes, then change output
• Toggle
     • Steer events alternatively to its outputs
     • First input can be set at start-up
• Select
     • Steer events according to Boolean input
• Call
     • Procedure invoked by either of two clients
     • Remember identity of caller
     • Return "done" after completion
• Arbiter
     • Two clients request shared resource
     • Grants mutually exclusive access
     • Must wait for completion



Muller C-element
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Interlock element

nMOS implementation
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Micropipeline control circuit

Delay

Request from
previous stage

Acknowledge
from next stage

Acknowledge
to previous stage

Request to
next stage

• Stage state rule

     If predecessor and successor differ in state
     then copy predecessor's state
     else hold present state

• Each loop contains one inverter and will alternate
• Composability
     • All stages share the same request/acknowledge signals
     • Stages are easily composed into longer pipes
• Scheme uses two phase signalling



Synchronization failure

• "System timing," Charles Seitz, Chapter 7 in
  "Introduction to VLSI Systems," Carver Mead and
  Lynn Conway, Addison-Wesley, 1980

• Philosophical problem
     • Jean Buridan, French philosopher
     • Case of the hungry dog
     • Dog is equidistant from two equal amounts of food
     • Equally attracted to each bowl of food
     • Dog will starve (paradox)
     • State of equilibrium

• Metastable condition
     • Unstable equilibrium
     • Condition may persist indefinitely
     • Behavior in cross-coupled circuits
          • Output voltage in range around logic threshold
          • Cannot reliably interpret as high or low

• Synchronous system reading asynchronous signal
     • Signal changes are not  discrete
     • Unequal delays (below) will cause illegal state
     • Solutions
          • Chain together synchronizers
          • Stoppable clock (synch stop, asynch start)
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