Computer design

Modularity, control, timing

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1987-2013 Paul J. Drongowski

Growth of complexity

100M
10M
1M
100K
10K
1K™ 4004
| | | |
1970 1975 1980
Processor | Transistors
4004 2,300
8080 6,000
8086 29,000
80286 134,000
80386 275,000
1860 1,000,000
1486 1,200,00

Microcomputer Solutions, Intel Corporation, 1989

1985 1990 1995 2000

Productivity

- Software
 One line of code per hour

* Designed, debugged, integrated, documented
- Hardware

100,000 transistor design
« 30 to 40 person-years of effort
* Roughly 1.5 transistors per hour
- Complexity
- Software: 100,000 to 1,000,000+ lines of code
- Hardware: One million transistors

Implications

- Beyond intellectual capability of any single engineer
* Development must be a team effort
* Interpersonal communication is essential
- Difficult to agree on meaning of common terms
- "Massive semantic by-pass"
- Better tools and techniques needed
* Increase productivity
- Assure correctness and performance
» Support product throughout lifecycle

Modular design

* Methodology
- Partition design into subunits
* Design, code, test, debug subunits in isolation
* Integrate subunits into (sub)system and test

- Advantages
* Reduces problem compexity
- Permits team implementation effort

* Problems and needs

- Good interface specifications
- Build to specification
- Avoid interface errors during integration
« Test to specification

- Good communication
- Make assumptions explicit
- Semantic agreement

* Isolation
 Transparency
- Hide design decisions (algorithms, data structures)
- Enhances maintainability

* Yo-yo design
« Capture functionality (top-down)
« Assure performance (bottom-up)
* Need "crystal ball" during top-down design
« Poor choice means expensive fix later

Modules

« A module is a black box

« The contents of the black box are unknown

+ A module implements one or more operations
- Button to invoke an operation
* Input slot(s) to send arguments
« Output slot(s) to receive results
- Completion signal (e.g., indicator light)

* Invocation procedure ("Coke machine" model)
 User sends arguments to input slots
 User pushes button
* Module commences operation
« When finished, completion is signalled
« User removes results from output slots

Module:

int a, int sum

int a, int diff

int a, int

int a, int

int int

Partitioning design decisions

* Top-down design

* Management of system complexity

* Divide and conguer system behavior

* Partitioning has performance implications

* What if we choose the wrong system structure?
* Bottom-up design

+ Cannot easily manage behavioral complexity

* Speed, space, power, etc. can be accurately estimated
+ "Yo-yo" design

* Practical approach

* Partition at top then estimate from the bottom

* lteratively evaluate/modify the partition

Example: Placing a cache memory (physical partition)

CPU [Cache [%*| Mapper [** Memory

+ Cache virtual addresses
+ Fast access to program data
* Avoid mapping delay

CPU <% Mapper % Cache 4-|>Memnry

+ Gache physical addresses
« Slower access to cache data

Software modules

 Access controlled subunits
- Visible interface
 Exported procedures that may be called
- Exported variables and data structures
- Implementation (transparent operation)
- Hidden functions
- Hidden data structures
 Degrees of access control
* Public export (anyone can call)
- Make name global
* Import name through extern
- Directed export (calling modules explicit)
* Explicitly identify operations and legal users
- Caller imports operation
- Separately coded and compiled

Communications conventions

« Modularity works through conventions
- Compiler enforces / implements convention
« Subroutine call
- Save working registers
 Put arguments on stack (or in display)
- Call and save return address
- Result on stack or in general register
- Restore working register values
- Examples: C or C++
* Message passing
 Receiving object has a dictionary of methods
- Send message with method name and arguments
- Receiver invokes method
- May reply to sender with result message
- Examples: Smalltalk or Actors

C++ modularity
 Object-oriented C dialect
- Classes define "types" of objects

class class-name {
private-variables

public:
public-interface
b
void
class-name: :member-function ()

{

 Objects are instantiated through declaration
class-name instance-name

* Apply member function to object instance
instance-name.member-function (

« Constructor
* Initialization
 Member function with same name as class
- Storage allocation through new
» Destructor
- Clean-up after use
* Function name is ~ class-name
- Storage deallocation through delete
 Inheritance

C++ inheritance example

class Register {

unsigned Value ;
public:

void Clear() { Value = 0 ; }

void Load(int NewValue) { Value =
NewValue; }

unsigned Read() { return(Value) ; }
Register() { Value = 0 ; }
P

class Counter : public Register {
public:
void Incr() { Load(Read() + 1) ; }
- 1)

void Decr() { Load(Read() N
P
class ShiftRegister : public Register ({
public:

void Left() { Load(Read() << 1) ; }

void Right() { Load(Read() >> 1) ; }
b

Hardware modules

* Monolithic block of circuitry

« Signal ports (physical connection points)
- Signalling protocol
- Data representation (unisigned, int, etc.)
« Timing (assumptions / constraints)
- Serial versus parallel (low pin-out versus speed)
- Correct electronic operation
* Inputs put load on user outputs
 Outputs must drive user result inputs

- Consistently apply discipline as in software design

« Asynchronous operation
- Similar to "Coke machine" model
 Supply arguments, make request
* Produce results, signal completion
- Computation can take as long as it needs

* Synchronous operation
 Sender and receiver both step to common clock
- Agree to exchange data within time window
* Produce results within prearranged period

- Communication "styles"
- Single - phase synchronous
* Two phase, non-overlapping clock
» Four cycle handshaking
 Two cycle handshaking

Synchronous design

« Simple sender-receiver communication

r Clock —l

Sender " Receiver

- Simplified timing

Clock / \
paatus ///////K__vais X//////]

<> < >
Set-up Hold

- Standard synchronous model

'

Source [Logic [Destination

Clock

 Synchronous timing constraints

Clock / \

vaavus ///// /KSR e X/

>4 <4
Logic delay Set-up Hold

Synchronous time constraints

« Clock period is the sum of:

- Compute time
- Set-up time

* Hold time (or pulse width if longer.)
- Estimate path delay by summing gate delays.

e

}

- Data book delay specification.

Minimum

Typical

Maximum

3 nsec

5 nsec

7 nsec

* Delay varies due to differences in manufacturing

_7

S~

3 ns

5ns

7 ns

A mix of slow parts will violate timing constraint.
* Defensive design and manufacturing.
- Design in a safety margin.
- Screen components for speed before assembly.
+ Use of worst case is overly conservative.
 Tune clock after assembly (bad approach.)

Two phase, nhon-overlapping clock

« Similar to single phase synchronous style

F Clock ﬂ

Sender —® Receiver

* Timing
i /T \ [
Phi-2 / \

Preset
<4—— Logic > >

«—— Clock period ———»>

» Operation

» Two clock phases: Phi-1 and Phi-2
* When Phi-1 is high, Phi-2 is low
* When Phi-2 is high, Phi-1 is low
 Phi-1 and Phi-2 are never high at the same time

* Two intermediate periods are needed when both are low
* First period can accomodate logic delay
- Second period is idle; make as short as possible

- Compute during Phi-1; Store during Phi-2

« Control of charge flow

- Analogous to canal locks (water < electric
charge)

* Open gate to allow charge into combinational logic

- Close gate and compute

« Open gate to release and store results

- Close gate to put system in consistent idle state

Synchronous limitations

« Speed is limited by slowest component
 Min clock period is determined by max delay
- Max delay path is called "critical delay path”

Clock
A
1 » 250 ns| >
Source Destination
> B >
200 ns

* Try to make unit B faster

 Use a better algorithm or faster components

- Example: Ripple carry adder versus carry-lookahead
- Unit A is over-designed

« Slow unit A down

* Try to use fewer components or lower power
- Use different clocking scheme

* Poly-phase clock

- Programmable clock periods
- Self-timed systems

- Allow each unit to execute at its own speed

- Synchronize when necessary

Synchronous pipeline

 Overlap computations in stages
« Example: Instruction lookahead

1 Fetch | Execute

2 Fetch | Execute

3 Fetch | Execute

Fetch unit |——p] Execute unit

« Synchronous 3-stage pipeline (below.)
A, B and C operate in lockstep
 Speed is determined by slowest unit (B)

Clock * * *
A B C
™200 ns ™ 250 ns [1150 ns >

Pipeline problems

- Hazards
- Data dependencies
 Control dependencies
» Collisions (resource conflict)

 Data dependency
* Problem: Result is needed before it is stored
- Example: Berkeley RISC
« Solution: Detect hazard and forward result

- Control dependency
* Problem: Branch occurs after prefetch
- Example: Berkeley RISC and SPARC
- Solutions
* Flush and refill pipeline
* Fill pipeline with no-op instructions
* Delay the effect of the branch
¢ Execute instructions already in pipe
¢ Branch late
¢ Compile code to use "extra" instruction effectively
¢ Can successfully find work in 90% of the cases

« Collisions (resource conflicts)
« Two instructions need the same resource
* Detection and resolution
- Static
¢ Usually detect at decode stage
¢ Conservative approach - hold until ready
* Dynamic
¢ Let instruction proceed
¢ Detect and resolve at point of conflict
- Usage counters
- Scoreboarding

Four-cycle handshake

- Communication elements are on closed loop path
* No request until completion of previous operation
« Permit imposition of arbitrary delay
* Delay insensitive, self-timed signalling convention
 Operation
- Sender asserts request (to send) line
 Receiver asserts acknowledge (ready to receive)
- Sender sets-up data on bus
« Sender drops request, indicating data ready (valid)
- Receiver drops acknowledge after data capture
+ Disadvantages
- Slow speed due to two way signalling
- Two-cycle version eliminates some overhead

Req >

Sender |e—2%£—— Receiver
Data >

Request / \
Acknowledge / \
Data i ST Vi

Self-timed systems

« Sources of delay
« Switching time
- Wire capacitance
- Off-chip connections
- Diffusion delay (quadratic in length)
- Effect of delay
- Long compute times
* Clock skew
 Equipotential regions (Seitz)
- Equalization time is relatively short
« Synchronous timing constraints are satisfied
- How big should a region be?
« Synchronization failure
 Synchronous sampling is risky
- Finite probability of failure
 Use asynchronous signalling between regions
« "Micropipelines," lvan E. Sutherland, CACM, Volume 32,
Number 6, June 1989, pg. 720-738. (Turing Award paper.)
- Request/acknowledge interlock between pipe stages
- Use delays plus Muller C-element

Self-timed organization

* Let each "time zone" have its own clock
- Signals will equalize in same short period of time
 Exploits physical locality

- Communication between self-timed systems
« Systems must synchronize to communicate
 Use four-phase signalling or synchronizers
 Try to communicate infrequently

A
/

Equipotential region

Long wires —%

Self-timed system

AN

Event logic

« Use signal transitions for control
« Example: Request-acknowledge handshake
- AND-merge (join, rendezvous.)
* Muller C-element
- If inputs match, copy their state to output
- If inputs differ, hold previous state
« OR-merge
* Exclusive-OR gate
- If an input changes, then change output
* Toggle
- Steer events alternatively to its outputs
» First input can be set at start-up
- Select
- Steer events according to Boolean input
- Call
 Procedure invoked by either of two clients
- Remember identity of caller
 Return "done" after completion
* Arbiter
« Two clients request shared resource
- Grants mutually exclusive access
 Must wait for completion

Muller C-element

33 : Logic symbol

nMOS implementation

A
AR T

> C

Interlock element

Request-1 —p —» Acknowledge-1

Request-2 —p —» Acknowledge-2

nMOS implementation
Acknowledge-1 A

Request-1 —C

N A4 4

v

) i &y y vl
J

Request-1 —C

Acknowledge-2

Micropipeline control circuit

Acknowledge « (Delay Request to

to previous stage \ next stage
Request from Acknowledge
previous stage from next stage

- Stage state rule

If predecessor and successor differ in state
then copy predecessor's state
else hold present state

- Each loop contains one inverter and will alternate

- Composability
- All stages share the same request/acknowledge signals
- Stages are easily composed into longer pipes

- Scheme uses two phase signalling

Synchronization failure

- "System timing," Charles Seitz, Chapter 7 in
"Introduction to VLSI Systems," Carver Mead and
Lynn Conway, Addison-Wesley, 1980

* Philosophical problem
- Jean Buridan, French philosopher
- Case of the hungry dog
* Dog is equidistant from two equal amounts of food
- Equally attracted to each bowl of food
* Dog will starve (paradox)
- State of equilibrium

* Metastable condition
 Unstable equilibrium
- Condition may persist indefinitely
- Behavior in cross-coupled circuits
» Output voltage in range around logic threshold
- Cannot reliably interpret as high or low

* Synchronous system reading asynchronous signal
- Signal changes are not discrete
- Unequal delays (below) will cause illegal state
- Solutions
- Chain together synchronizers
- Stoppable clock (synch stop, asynch start)

Synchronous decoding of A

Asynchronous input :>—> —$ 00 11

Reg

[> :)—» ? | 0101

Clock

