Computer and VLSI design

Packaging

P.J. Drongowski SandSoftwareSound.net

Packaging

- Considerations
 - Mechanical protection of circuits
 - Interconnection
 - Other circuits
 - Other layers of packaging hierarchy
 - Size
 - Heat dissipation and cooling
 - Power distribution and grounding
 - Noise
 - Shielding
 - Radio frequency inferference
 - Security
 - Assembly
 - Automatic insertion equipment
 - · Wire bonding, soldering, wire-wrap, cabling
 - Testing
 - Access to primary inputs and outputs
 - Physical access to internal test points
- Trends in new packaging technology
 - Smaller, denser packages and interconnect
 - Surface mount devices
 - Design for testability, manufacturing
 - Thermal modelling
 - Ceramics
 - Liquid cooling

Packaging & interconnection hierarchy

- · Packaging and interconnection form a hierarchy
- · Within each layer
 - Specific package type(s)
 - Interconnection scheme
- · Between layers
 - Connection scheme
 - Compatible bridge between higher and lower layers
- Each layer has physical and electrical limitations
- Partitioning has physical and electrical implications

Level	Package	Connection scheme
Cabinet Chassis Backplane Board Component Chip Transistor	19 inch rack Metal frame Motherboard PCB DIP, PLCC, etc. Substrate Substrate	Cable Cable Trace or WW Metal trace or WW Wire or metal film Si or metal wire Si or metal wire

Hierarchy Rack Chassis Chassis PCB's Fan Power supply Motherboard

Hierarchy

Printed circuit board

- Minimize number of parts and pins
- Standardize parts (surface mount)
- Use design guidelines with checks
 - Component sizes and spacing
 - Test point spacing
 - Border area for handling
 - Rules for high-yield soldering
- PCB production (Apple)
 - · 8" and 12" standard PCB sizes
 - Build 90% of PCB at any site
 - Surface mount
 - SE Only 20% SM technology
 - Ilcx 80% surface mount
 - Only 1% manual insertion in Ilcx
 - 10 components in Ilcx vs. 16 in SE

Surface mount

- Components mount on surface
- No through holes
- Can use top and bottom of PCB
- · Need less board area and power
- · Operate at higher speeds
- · Easier for machines to place

14 pin dual in-line 0.1" spacing 0.23 sq-in 14 pin small outline IC 0.05" spacing 0.08 sq-in

Cooling

- PCB density is beyond air cooling
- Short delay requires short signal paths
- Shorten life by 50% for every 10° C
- Use liquid cooling
- Inexpensive 'plumbing' is a problem

MCC radiator

- Similar to human circulatory system
- Cool water flows in through large channels
- Passes through smaller channels under IC's
- Narrow capillaries between interconnect
- Hot water flows into larger outgoing channels
- Boards plug in to electrical and cooling backplane
- Multilayer silicon / polymer sandwich
- Channels are etched in silicon

