Computer and VLSI design

Introduction to system and circuit testing

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1987-2013 Paul J. Drongowski

Testing goals

* Does the system meet the architects intent?
* Engineer’'s concept versus implementation
+ Compatibility with specification
* Does it run the operating system?
+ Are there any defects?
* Assumes no conceptual errors
* Quality assurance-type testing
» Techniques
* Formal modeling and verification
+ Diagnostic program
* Built-in test hardware and routines
» Symbolic testing and debugging

Multilevel test strategy

* Online, operational testing
* Detect and report "hard" and "soft" errors
* Keep overhead low
* Diagnostic mode testing
+ Off-line, direct test of hardware features
* Often used for field maintenance
* Isolate fault to replaceable unit (chip or board)
* Hardware self-test
» Check out hardware at operational speed
* May use special microcode, BIT hardware
* May require external test engine, fixture, etc.
* Quality assurance testing
* Electrical / parametric testing
+ Performance over supply voltage range
+ Performance over temperature range
*+ Voltage level under load
+ Timing / delay testing
* Functional testing

Software path testing

while (Condition-Aa)
gf (Condition-B)
glack—ﬂ
else}{
Block-EB

}
Block-C

'
Condition-A

Q

Condition-B

=

Block-A Block-B

o

Block-C

Hardware path testing

+ Use structure to construct diagnostics
+ Exercise each path

* Find s-a-0 and s-a-1 faults on path

+ Exercise control flows (in microcode)

™
o)
S —
LF]
F]

_I

D

—— 5

-
E c
B |— 4 i)
o o
= i

Yy v
Mux

SP —f-

Diagnostic programs

» Test ISA, I/O subsystem and hardware
» Good for built-in, start-up self test
» Exploit system structure if possible
* Procedure
+ Start with a few fundamental instructions
* Progress to complex instructions
* Test processor conditions and special cases
* Problems
+ Selective test values versus exhaustive
+ Control flow testing (branches and calls)
* Exception conditions
* Interrupt and trap sequences
* Example: Serial interface port
* Loop send lines into receive lines
* Is data being transmitted correctly?
+ Try different character size, stop/start, parity
+ Are interrupts received and vectored?
+ Example: Primary memory
* Failures
+ Pattern sensitivity (errors between adjacent cells)
+ Data loss (cannot hold data between refresh)
+ Addressing (errors in address decoding logic)
* Multiple writes (writing to cell changes others)
+ Sense amplifier (slow recovery)
+ Simple patterns
* Marching 0's & 1's
+ Checkerboard)
* Walking patterns
* Galloping patterns
+ Surround disturb patterns

Diagnosis and repair

» Support for field maintenance
* Not only detect fault, but isolate to replaceable unit
* Repair / replacement strategy
+ Subsystem, board, chip
* Must keep inventory of replacement units
* Field service staffing, instrumentation and overhead
+ Cost of repair versus pricing (per call, contract, etc.)
+ Time to failure (MTTF)
* Time to repair (MTTR)
* Built-in diagnosis
* Remote diagnosis

L
— :

Remote facility

Customer site

* Diagnostic processor
* Loads microcode
+ Performs health and status monitoring
+ Act as off-line test processor (apply patterns, etc.)
+ Communication link to remote central service facility
» Switch in redundant, back-up resources if necessary
* Diagnosis, dispatch, repair

+ Suitable for higher cost, high availability products

Regression testing

* Maintenance: Messing with a working system
* Have changes introduced new bugs into the system?
* Method
* Construct/model the system
+ Construct test patterns
+ Save patterns in a file (or design database)
+ Apply patterns to working (known good) system
* Record test results in file (or design database)
« After a change, apply patterns and acquire new results
+ Compare new test data against old results
* Problems
* Thousands of test patterns/results
+ Automate comparison
* Unix dif £ program
+ System structure may change
* May require new test patterns
* Incremental chages to test experiments

I{ng;uslgeg_:ﬁnd — Hesults
Test
patterns Compare
Modified

— Hesults

system

Faults and failure modes

* Stuck-at-zero (s-a-0)
+ Stuck-at-one (s-a-1)
+ Single faults

* Multiple faults

* Transient failures

* Non-stuck-at faults

+ Fault masking

+ Sequential faults

Test / experiments

* Fault detection - "ls there a fault?"
« Fault isolation - "Where is the fault?

Test signals

* Primary inputs - "Inputs that can be driven”
* Primary outputs - "Outputs that can be sensed"

Test activities

+ Test generation
* Test evaluation
+ Test application

Test generation

+ Objectives
* Exercise the circuit to reveal or identify faults
* Detect and isolate faults as fast as possible
* Find minimum set of patterns for adequate test
* Factors
+ Controllability - primary inputs / probes
* Observability - primary outputs / probes
* Not all nodes are controllable or observable
* Problems
« Ambiguous, incomplete or incorrect specification
* Volume of test data
+ Example: 10,000 gates
+ Two states per gate: 20,000 experiments
+ Failure modes
+ Fault doesn't fit stuck-at model (e.g., CMOS)
+ Multiple faults
» Generation techniques
* Exhaustive
+ Most complete testing
*+ Takes too long to be practical
* Random
+ Generate patterns at random
+ May not detect all faults (defects)
* Path sensitization
+ Use knowledge of structure to generate patterns
* Doesn't work for all gate networks
* Inconsistent inputs prevent set-up, propagation
+ D-algorithm (J.P. Roth, 1966)
+ 3 tables of cubes: Primitive, failure, propagation
+ Cube intersection: check logic consistency
+ Pattern generation process for particular fault
+ Select failure D cube for the fault
* Drive fault forward using propagation cubes
* Determine inputs by implication (justification)

Path sensitization

- Consider the example below (Kohavi, pg. 210)
* Test for s-a-1 fault at input A

ot §—
m P q
11— — 11— — —
1 — 8 =
— 1-0

 Suppose this is the only path from A to the primary output
* Procedure to test for s-a-1 at A
* Apply a zero to input A
* Apply all one's to remaining inputs of AND (NAND) gates
- Apply all zero's to remaining inputs of OR (NOR) gates
* Procedure allows propagation of test signals
» This procedure will also test:
* s-a-0 faults at m, nand p
- s-a-1 fault at g
* Follow complementary procedure for s-a-0 at A

Observations

* A set of tests which sensitize a set of paths containing
all connections must only detect faults at primary inputs
- Successful if each output is connected to only one input
- Circuit structure is a "tree" in that case
- If an output is shared, the technique may not work
* Propagation values may conflict with "test" values
« Such pathological circuits are known
- Should try to sensitize several paths in one test for speed

Fault detection

- See "Switching and finite automata theory,
Zvi Kohavi, McGraw-Hill.
- Faults
* Apply test input values
- Look for unexpected (erroneous) output values
- Exhaustive testing
 Apply all possible input combinations
 Too time consuming to be practical
- Typical fault model
« Stuck-at-0 and stuck-at-1
- Single faults
 Loop-free combinational logic
- Goal: Try to minimize test time with acceptable coverage

Fault table

- One row for every possible test (input combination)
 One column for every fault
- Mark entry if fault can be detected by input combination
* Apply inputs (as represented by that row)
- Fault is detectable if the output of the faulted
circuit differs from the correct output value
* Find the minimal set of rows so that every column
has at least one mark
 Such a set of inputs covers the fault table
* Problem is identical to prime implicant covering

Fault table example

A__Mm
B |) p

n

AB + ~C
~C
q

ABC | my ny Py 9o My Ny Py Qy
000 X
001 X
010 X
011 X X X
100 X
101 X X X
110
111 X X X

- To determine if output is s-a-0, try to switch it to one
* To determine if output is s-a-1, try to switch it to zero
* Minimal set = { 000, 011, 101, 111 }
- It may not be possible to isolate a fault

« Consider input 111, for example

* m s-a-0, n s-a-0 or p s-a-0 can be source of error

Test evaluation

+ Evaulate test quality
+ Fault coverage
* Grading
» Percentage of all possible faults that will be
detected by test patterns
+ Alternative definitions
+ Structural
* Possible fault: connection s-a-0 or s-a-1
* Percentage of connections driven 1 and 0
* Digital Equipment Corporation
+ Possible fault: transistor doesn't switch
* Percentage of transistors switched on and off
* Behavioral
* No structural information
* Possible fault: branch not taken
* Percentage of control paths exercised
» Or percentage of operations tested
+ Fault insertion experiments
* Determine fault coverage
* Known good device (KGD)
* Known good board (KGB)
* Basic method
+ Apply patterns to KGD and save correct results
* Insert faults in KGD
» Apply patterns to faulty device
+ Compare output with correct results
+ Compute percentage detected
* Logic fault simulator
+ Takes the place of KGD or KGB
* Incremental (interactive testing / grading)
+ COSMOS
» Compiled simulator for MOS circuits
+ Symbolic test pattern generation and fault simulation

Test application

* Apply tests to real circuit
» Automatic test equipment (ATE)
+ Stored pattern tester
* Develop test patterns and determine coverage
* Transfer patterns and KGD results to ATE station
» Apply patterns and acquire test data
* Compare with KGD and report faults
* Programmability comes at a very high cost
+ Comparison tester
+ Compare circuit with "golden” device (KGD)
* Report differences as faults
« Low cost: $20,000 to $100,000
* Depend upon bug- and defect-free KGD
* Maximum test application rates
+ Tester must operate at very high speed
+ Hard to test high performance parts at speed
* Higher speed means higher test throughput
*+ Analog electronics
* Must measure voltages and currents
* Different failure modes
» Must test digital inputs over specified range
* Pulses and timing
*+ Tester must catch pulses
* Need to measure pulse width, delay, etc.
* Physical access (probes)
* Need to connect probes to primary inputs / outputs
» Connections to internal test points
- Wafer probe - pre-packaging QA tests
+ Automated IC handler
+ Feeder rails to test site
+ Clamp device for testing
+ ATE directs device to good / reject output rails
* PCB test fixtures

Test fixtures

« Zero insertion force (ZIF) socket
* Insert in socket, throw lever, make contact
* Manual insertion, slow
« Wafer probe
* Very fine wires to bonding pads
+ Put pads in standard locations (frame)
* Only signals at pads can be mechanically probed
+ Can use E-beam, but not practical on large scale
+ Bed of nails
+ PCB test fixture
* Probe internal test points
* Must plan ahead for physical access to test points

L e

