
VLSI design

P.J. Drongowski
SandSoftwareSound.net

Copyright © 1990-2013 Paul J. Drongowski

Automated synthesis

• "Automated synthesis of digital systems," Alice C. Parker,
 IEEE Design & Test, November 1984, pg. 75-81.
• "Tutorial on high-level synthesis," M.C. McFarland,
 A.C. Parker, and R. Camposano, Proc. 25th Design
 Automation Conference, June 1988, pg. 330-336.

Synthesis

• Mapping a behavioral specification to a hardware
 implementation while meeting a set of goals and
 constraints
• Advantages
 • Produce and update a design quickly
 • Generate a range of implementations
 • Correct by construction (synthesizer must be verified!)
 • Produce implementations to check manual designs
 • Ability to "search the design space"
 • Track design decisions and justifications
 • Make IC technology available to more people
• Three categories of synthesis programs
 • Algorithm
 ! Input: Abstract behavior
 ! Output: Behavior with control flow
 • Register transfer
 ! Input: Behavior with control flow
 ! Output: Register transfer structure
 • Logic
 ! Input: RT structure and detailed control flow
 ! Output: Gate level structure or layout
 ! Two major approaches
 ! Decompose into primitive elements (gates)
 ! Match registers / operators against library
• Typical process flow (sequence)

 ! Algorithm ! register transfer ! logic

Synthesis
･ Input specification
 ･ Behavioral information
 ･ What functions to perform

･ Target implementation
 ･ Behavioral specification
 ･ Structural information
 ･ Detailed behavior of the structure
 ･ Relationship between these three elements

･ Goals
 ･ Maximum speed
 ･ Minimum cost (e.g., area, package count)
 ･ Minimum pin count
 ･ Minimum power consumption
 ･ Minimum design time
 ･ Maximum reliability
 ･ Maximum testability

･ Constraints
 ･ Time delays for and between events
 ･ Area or package count upper bounds
 ･ Maximum number of pind
 ･ Upper bound on power consumption
 ･ Upper bound on software runtimes
 ･ Lower bound on reliability
 ･ Lower bound on testability

Subproblems

• Resource allocation
 • Select structures to implement functions
 • Many - to - many mapping
• Design transformation
 • Change design to achieve goal or meet constraint
 • Example
 ! Delete a (temporary) buffer register
 ! Share use of a pre-existing register instead
• Decomposition (composition)
 • No direct mapping from function to structure
 • Decompose function until mapping is direct
 • Composite structure built on realizable primitives
• Event scheduling
 • Assign each operation to a time slot
 • Slot may be a clock phase or interval

Approaches

• Synthesize and improve
 • Generate a correct solution
 • Transform solution to optimize objectives
• Optimal synthesis
 • Perform optimization during synthesis
 • If criteria are not met, synthesize a new design
• Programming techniques
 • Heuristic
 • Mathematical programming formulations
 • Expert systems

Algorithm synthesis

• Input specification, goals and constraints
• Output is specification with complete control flow info
• Input specification
 • "Black box" behavior
 • A list of input variables
 • A list of output variables
 • Functions performed on inputs to produce outputs
 • Partial orderings on functions
 ! Data precedence
 ! External constraints between
 ! Reading inputs and
 ! Writing outputs
 • Description of variables
 ! Specified bit width
 ! Binary notation
 ! May be subdivided into fields
 ! Increases complexity of bookkeeping
• Internal representations
 • Parse trees
 • Graphs (most popular)
 ! Control flow (order of events)
 ! Data flow (producer - consumer)
• High level transformations
 • Detection (removal) of common subexpressions
 • Constant folding and propagation
 • Dead code elimination
 • Inline expansion of procedures
 • Loop unrolling
 • Serial - parallel design decisions
• Local transformations
 • Change loop ending criterion
 • Division by 2 to right shift
 • Multiplication by 2 to left shift
 • Increment / decrement

Algorithm (example)

• Compute square root of X using Newton's method
• Number of iterations needed is usually small (e.g., 4)
• Initial value given by 1st degree minimax polynomial

Y := 0.222222 + 0.888889 * X ;
I := 0 ;
do until I > 3 loop
 Y := 0.5 * (Y + X / Y) ;
 I := I + 1 ;
enddo ;

0.888889

0.222222

0.5

*

/

+

+

*

> +

3 1

I

I

X

Y

Y

Control

*

+

/

+

*

+

>

true

false

• No dependence between "I+1" and calculation of Y
• Dataflow arc represents producer - consumer relationship
• Possible local transformations
 ! Loop-ending criterion changed to "I = 0"
 ! Use two bit variable for I
 ! Replace "* 0.5" by right shift
 ! Replace addition of 1 to I by increment
• Could unroll loop due to small number of iterations

Optimized example

• Graphs (below) depict effect of local transformations
• Trivial solution
 • Uses one functional unit and one memory
 • Requires 23 control steps
• Parallel solution (shown below)
 • Constrained only by essential dependencies
 • Two dummy nodes delimit the loop boundaries
 • Two functional units are required

 • Only 2 + (4 ! 2) = 10 control steps needed

*

+:=

+1

=0

/

+

sh

join

fork

1

2

3 5 7 9

4 6 8 10

4 6 8 10

Shift

Cons XTY

Mux Mux

+ * /

I0

Mux

+1 =0

Register transfer synthesis

• Two major activities
 • Generate datapath structures
 • Synthesize control (sequence events in datapath)
• Both activities should proceed in parallel

 • Resource sharing ! more complex control
sequences

Datapath synthesis

• Assume control flow is (at least) partially specified
• Behavior is given in dataflow or register transfer form
• Allocation
 • Goal: minimize amount of hardware needed
 • Fn'l units, memory, paths usually minimized separately
 • Variables (values) are allocated to registers
 ! Assign value to register
 ! If it is generated in one control step
 ! And used in a later (different) control step
 ! Assign to same register if lifetimes do not overlap
 • Operations are allocated to operators
 ! Share fn'l unit if opertions are in different time steps
 ! Problem
 ! Group mutually exclusive operations such that
 ! Minimum number of groups is obtained
 • Registers and operators are interconnected
 • Multiplexers are inserted as required
• Final event scheduling
 • Minimization goals
 ! Length (duration) of time step
 ! Number of time steps to perform function
 • Determine resource sharing
 • Schedule register transfers into time slots
 • Generate timing analysis
 ! Compute propagation delay
 ! Determine / report set-up and hold times

Datapath allocation

• Iterative / constructive techniques
 • Assign elements one at a time
 • Generally look at less of the search space (than global)
 ! Usually more efficient
 ! But, less likely to find optimal solution
 • "Global" selection of element for assignment
 ! Select item using some metric
 ! Example: Item that minimizes increase in cost
 ! Minimize fn'l units, registers, MUX's [EMUCS]
 ! Minimize interconnect [Elf]
 ! Earliest value in dataflow [REAL]
 • "Local" selection of element
 ! Select items in a fixed order (e.g., greed)
 ! In order of occurence in dataflow graph [Hafer]
 ! Expert knowledge [Kowalski's DAA]

• Global allocation techniques
 • Simultaneous solution to multiple assignments
 • Graph theoretic formulation
 ! Objects to be assigned are nodes
 ! Arc between nodes indicates possible sharing
 ! Find sets of nodes where
 ! Members are connected to one another
 ! Members in set can share without conflict
 ! Clique finding problem
 ! Find minimum # of cliques that cover graph
 ! Find maximum cliques in the graph
 ! Problem is NP-hard (try heuristics)
 • Mathematical programming
 ! Create variable for each possible assignment
 ! Variable = 1 if the assignment is made, else 0
 ! Find solution that minimizes cost function
 ! Constraints to one - to - one mapping of objects
 ! Optimal solution requires exhaustive search!

Scheduling
• Interaction between scheduling and allocation activities
• Type of scheduling algorithm

Interaction with allocation
• Vicious circle between allocation and scheduling
 • Can two operations be scheduled into same step?
 ! Do they use the same functional unit?
 • What are op delays so efficient schedule can be found?
 ! What is delay of fn'l units and interconnections?
 • How many fn'l units and what allocation of operators?
 ! Which operations should be done in parallel?

• Set (no) limit on the number of fn'l units, then schedule
 • FACET, DAA, Flamel: Let user specify limit
 • MIMOLA: Iteratively adjust limit and reschedule
 • Chippe: Use expert system and allocator feedback

• MAHA [Parker]
 • Develop schedule and resource needs simultaneously
 • Allocate functions as it schedules
 • Adds fn'l units when it cannot share existing ones

• HAL [Paulin]
 • Force directed scheduling
 • Schedules without time constraint
 • Balances number of functional units per step
 • Number req'd is maximum number req'd in any step
 • Can reschedule after detailed datapath design

• Yorktown Silicon Compiler
 • Assign each operation to its own unit
 • Perform all operations in one control step
 • Iteratively increase sharing

• BUD
 • Cluster operations using metric
 • Metric accounts for sharing, interconnect, parallelism
 • Assign functional unit to each cluster

Scheduling algorithms

• Two basic classes

• Transformational
 • EXPL
 ! Exhaustive search
 ! Try all S-P transformations and find best one
 ! Could be improved by branch and bound
 ! Cut off suboptimal search path
 • CAMAD and YSC
 ! Heuristic search
 ! Move design closer to goal
 ! YSC produces pastest possible schedule

• Iterative / constructive
 • Add operations until all are scheduled
 • Differences
 ! How to choose the next operation
 ! Where to schedule each operation
 • ASAP (CMUDA, MIMOLA, Flamel)
 ! Assumes fn'l units have been specified
 ! Sort operations topologically
 ! Schedule each operation in order
 ! No priority is given to operations on critical path
 ! Less important operations can block critical ones
 • List scheduling (Elef, BUD, ISYN)
 ! Sort list by priority
 ! Schedule highest priority op until resources exhausted
 ! Move to next control step and repeat
 • Freedom-based scheduling
 ! Schedule critical path operations first
 ! Next, schedule operations with least freedom first
 ! Smallest range of possible control steps
 • Force-directed scheduling [Paulin]
 ! Range of possible steps forms distribution graph
 ! Graph shows how heavily loaded each step is
 ! Op is selected and placed to balance distribution

Logic synthesis

• Decompose into primitive elements (gates and flip/flops)
• Many input formats
 • Logic equations
 • Truth table
 • State table (for finite state machines)
• Perform gate-level optimizations (Boolean algebra)
• Control synthesis
 • Often PLA based
 • Must generate microcode
 • Techniques (and trades)
 ! Vertical vs. horizontal microcode
 ! Encoding to reduce space (code size)
 ! "Fold" PLA to reduce size

Module binding

• Alternative to logic synthesis
• Match operator / register requirements against library
• Find element that most nearly meets requirements
• Advantages
 • Target components are known and characterized
 • Size and timing estimation is more accurate
• May disallow solution using custom hardware

Control synthesis

• Selection of clocking scheme
 • Determine number and length of clock phases
 • Allocate events to clock phases
 • Produce revised, synchronized control flow
• Controller design style is often preselected
 • Random logic
 • Microcode
 • Programmable logic array (PLA)

Subproblems

• Resource allocation
 • Select structures to implement functions
 • Many - to - many mapping
• Design transformation
 • Change design to achieve goal or meet constraint
 • Example
 ! Delete a (temporary) buffer register
 ! Share use of a pre-existing register instead
• Decomposition (composition)
 • No direct mapping from function to structure
 • Decompose function until mapping is direct
 • Composite structure built on realizable primitives
• Event scheduling
 • Assign each operation to a time slot
 • Slot may be a clock phase or interval

Approaches

• Synthesize and improve
 • Generate a correct solution
 • Transform solution to optimize objectives
• Optimal synthesis
 • Perform optimization during synthesis
 • If criteria are not met, synthesize a new design
• Programming techniques
 • Heuristic
 • Mathematical programming formulations
 • Expert systems

