VLSI design

Introduction to CMOS circuits

P.J. Drongowski SandSoftwareSound.net

Digital circuit technology

- Representation
- Decision and computation
- Storage (memory)
- Energy loss

Binary representation

- Absence/presence of charge
- Example
- Absence = "0" (0 Volts)
- Presence = "1" (+5 Volts)

Decision and computation

- Charge (voltage) controlled switch - Example: MOS transistor switch

Gate $=1$

Closed

Gate $=0$

Information storage

- Capacitor (charge storage)
- Example: MOS transistor

Energy loss

- Restoring logic
- Amplification
- Power supply

Simplified transistor structure

Vgs vs. Ids

Vds vs. Ids

CMOS inverter

CMOS logic gates

Choosing transistor sizes (W and L)

- Delay
- Rise time
- Fall time
- Current consumption
- Power dissipation

Channel width and length

Rise time

- Time to rise from 10% to 90% of final value.
- Pull-down transistor is off.
- Pull-up channel and load form an RC circuit.

$$
\text { Trise }=4 \frac{\text { Cload }}{\beta \times \mathrm{Vdd}} \quad \beta=\frac{\mu \times \varepsilon}{\text { Tox }} \frac{\mathrm{W}}{\mathrm{~L}}
$$

$\varepsilon=35 * 10^{-14} \mathrm{~F} / \mathrm{cm} \quad$ Permittivity of gate oxide
$\mu=1000 \mathrm{~cm}^{2} /$ V-sec Hole surface mobility
Tox $=5$ microns
Thickness of gate oxide

Fall time

- Time to fall from 90% to 10% of final value.
- Pull-up transistor is off.
- Pull-down channel and load form an RC circuit.

$$
\text { Tfall }=4 \frac{\text { Cload }}{\beta \times \mathrm{Vdd}} \quad \beta=\frac{\mu \times \varepsilon}{\text { Tox }} \frac{\mathrm{W}}{\mathrm{~L}}
$$

$\varepsilon=35 * 10^{-14} \mathrm{~F} / \mathrm{cm} \quad$ Permittivity of gate oxide
$\mu=500 \mathrm{~cm}^{2} /$ V-sec Electron surface mobility
Tox $=5$ microns

Thickness of gate oxide

Effect of dissimilar beta values

- $\beta_{n}=2 \times \beta_{p}$
- Then, Tfall $=\frac{\text { Trise }}{2}$
- For symmetric rise and fall, $\frac{\beta_{\mathrm{n}}}{\beta_{\mathrm{p}}}=1$
- Therefore, $\mathrm{W}_{\mathrm{p}}=2 \times \mathrm{W}_{\mathrm{n}}$

Effect on DC transfer characteristics

Static power dissipation

$P_{S}=\sum_{1}$ leakage current \times supply voltage

- n is the number of devices
- Supply voltage is typically +5 Volts
- Leakage current is 0.1 nA to 0.5 nA per gate $\left(25^{\circ} \mathrm{C}\right)$
- Lower supply voltage \Rightarrow lower dissipation!

Dynamic power dissipation

$P_{d}=C_{\text {load }} \times V_{d d}^{2} \times f$

- During transitions $(0 \Rightarrow 1,1 \Rightarrow 0)$, both transistors are ON
- Short current pulse from Vdd to ground
- Current is required to (dis)charge load capacitance

Total power dissipation

$$
P_{\text {total }}=P_{S}+P_{d}
$$

- Portions of design may operate at different frequencies

CMOS transmission gate

Normally open

Normally closed

CMOS multiplexer

CMOS dynamic D latch

CMOS static D latch

Static CMOS RAM

Dual port RAM

CMOS content addressable memory

- Write operation
- Place D and ~D on data lines
- Assert the select line S
- Read operation
- Precharge D and ~D lines
- Assert select lines
- Either D or \sim D will be pulled down
- Compare operation
- Precharge match line
- Put pattern data on ~D
- Put complement of data on D
- If data matches, pull-down will remain OFF
- If data does not match, match line is pulled down

Binary full-adder

A	B	C	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

NAND and XOR implementation

Domino logic

- Clocked CMOS combinational logic
- Add CMOS buffer to output of each logic stage
- Precharge dynamic gate high $(\mathrm{Phi}=0)$
- Conditionally discharge during evaluate ($\mathrm{Phi}=1$)
- Dynamic gate can only transition from 1 to 0
- Output of buffer only transitions from 0 to 1
- Cascaded logic evaluates and "falls" in turn
- Limitations
- Only non-inverting logic is possible
- Each gate must be buffered
- Charge distribution in large structures

CMOS domino sum

Compare

Material

- Capacitance ($\lambda=1.5 \mu \mathrm{~m}$)
- Unit is capacitance per square micron of area
- Compute area and multiply by material constant

Gate
Polysilicon over field
4.5×10^{-4}
n-diffusion (active)
p-diffusion (active)
Metal 1 over field
Metal 2 over field
$0.5 \times 10_{-4}^{-4}$
0.9×10^{-4}
0.9×10^{-4}
0.2×10^{-4}
0.1×10^{-4}

- Resistance
- Sheet resistance
- Count number of squares of material
- Multiply by material constant
- Resistance $R=\frac{\rho}{t} \frac{L}{W}$
$\rho=$ Resistivity
$\mathrm{t}=$ Thickness
L = Conductor length
W = Conductor width

Metal	0.5 Ohms / square
Silicides	3 Ohms / square
Diffusion	25 Ohms / square
Polysilicon	50 Ohms / square

Growth of complexity

Processor	Transistors
4004	2,300
8080	6,000
8086	29,000
80286	134,000
80386	275,000
1860	$1,000,000$
1486	$1,200,000$

Microcomputer Solutions, Intel Corporation, 1989.

