VLSI design

Introduction to CMOS circuits

P.J. Drongowski SandSoftwareSound.net

Copyright © 1987-2013 Paul J. Drongowski

Digital circuit technology

- Representation
- Decision and computation
- Storage (memory)
- Energy loss

Binary representation

- Absence/presence of charge
- Example
 - Absence = "0" (0 Volts)
 - Presence = "1" (+5 Volts)

Decision and computation

- Charge (voltage) controlled switch
- Example: MOS transistor switch

Information storage

- Capacitor (charge storage)
- Example: MOS transistor

Energy loss

- Restoring logic
- Amplification
- Power supply

Simplified transistor structure

Vds vs. Ids

Choosing transistor sizes (W and L)

- Delay
 - Rise time
 - Fall time
- Current consumption
- Power dissipation

Channel width and length

Rise time

- Time to rise from 10% to 90% of final value.
- Pull-down transistor is off.
- · Pull-up channel and load form an RC circuit.

$$\epsilon = 35 * 10^{-14} \text{F} / \text{cm}$$

 $\mu = 1000 \text{ cm}^2 / \text{V-sec}$
Tox = 5 microns

Permittivity of gate oxide Hole surface mobility Thickness of gate oxide

Fall time

- Time to fall from 90% to 10% of final value.
- Pull-up transistor is off.Pull-down channel and load form an RC circuit.

$$\epsilon = 35 * 10^{-14} \text{ F / cm}$$

 $\mu = 500 \text{ cm}^2 \text{/ V-sec}$
Tox = 5 microns

Permittivity of gate oxide Electron surface mobility Thickness of gate oxide

Effect of dissimilar beta values

•
$$\beta_n = 2 \times \beta_p$$

• Then, Tfall = $\frac{\text{Trise}}{2}$
• For symmetric rise and fall, $\frac{\beta_n}{\beta_p} = 1$
• Therefore, $W_p = 2 \times W_n$

Effect on DC transfer characteristics

Static power dissipation

 $P_{S} = \sum_{1}^{1}$ leakage current × supply voltage

- n is the number of devices
- Supply voltage is typically +5 Volts
- Leakage current is 0.1nA to 0.5nA per gate (25° C)
- Lower supply voltage ⇒ lower dissipation!

Dynamic power dissipation

$$P_d = C_{load} \times V_{dd}^2 \times f$$

- During transitions $(0 \Rightarrow 1, 1 \Rightarrow 0)$, both transistors are ON
- Short current pulse from Vdd to ground
- Current is required to (dis)charge load capacitance

Total power dissipation

 $P_{total} = P_s + P_d$

Portions of design may operate at different frequencies

CMOS transmission gate

CMOS multiplexer

Static CMOS RAM

Dual port RAM

CMOS content addressable memory

- Write operation
 - Place D and ~D on data lines
 - Assert the select line S
- Read operation
 - Precharge D and ~D lines
 - Assert select lines
 - Either D or ~D will be pulled down
- Compare operation
 - Precharge match line
 - Put pattern data on ~D
 - Put complement of data on D
 - If data matches, pull-down will remain OFF
 - If data does not match, match line is pulled down

Binary full-adder

NAND and XOR implementation

Domino logic

- Clocked CMOS combinational logic
- Add CMOS buffer to output of each logic stage
- Precharge dynamic gate high (Phi = 0)
- Conditionally discharge during evaluate (Phi = 1)
- Dynamic gate can only transition from 1 to 0
- Output of buffer only transitions from 0 to 1
- Cascaded logic evaluates and "falls" in turn
- Limitations
 - Only non-inverting logic is possible
 - Each gate must be buffered
 - Charge distribution in large structures

Material

- Capacitance ($\lambda = 1.5 \ \mu m$)
 - Unit is capacitance per square micron of area
 - Compute area and multiply by material constant

2

- Resistance
 - Sheet resistance
 - Count number of squares of material
 - Multiply by material constant

Resistance
$$R = \frac{1}{t} \frac{1}{W}$$

 $\rho = \text{Resistivity}$

t = Thickness

- L = Conductor length
- W = Conductor width

Metal	0.5 Ohms / square
Silicides	3 Ohms / square
Diffusion	25 Ohms / square
Polysilicon	50 Ohms / square

Growth of complexity

Processor	Transistors
4004	2,300
8080	6,000
8086	29,000
80286	134,000
80386	275,000
i860	1,000,000
i486	1,200,000

Microcomputer Solutions, Intel Corporation, 1989.