
VLSI design

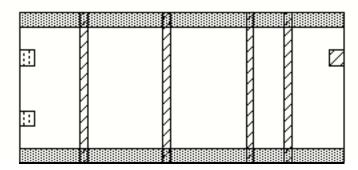
Floor planning and layout

P.J. Drongowski SandSoftwareSound.net

Plan ahead

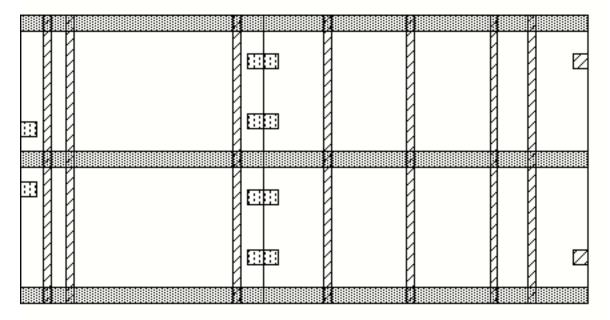
- Good floor planning is like structured programming
 - Postpone tiny details until later
 - Design the overall system structure
 - Provide a context for cell (I/O) design
- Space and power are limited resources
 - Things never fit in the space allotted
 - Small size leads to good yield
 - Wiring occupies a large part of the real estate
- A good plan can minimize long, random wire runs
 - Manual routing is tedius and error-prone
 - Auto-routing cannot overcome poor placement
 - Length of time-critical signals must be controlled

Planning considerations


- Identify major functional blocks
 - Coarse grain functions, not gates
 - Minimize number of distinct cell / block types
 - · Re-use cells if possible
- Estimate size of functional blocks
 - Use experience
 - Examine similar designs and systems
 - Prototype common or space-critical cells
- Place functional blocks within core
 - Avoid busses and random wiring
 - Use wiring by abutment
- External, off-chip connections
 - Short, direct connection to core logic
 - Pad assignment affects placement, vice versa
- Power grid
 - · Must be routed on (sized) metal
 - Grid connects all subsystem
 - Minimize distances to keep losses low
- Clock distribution
 - Must (should be) routed on metal
 - Keep wire lengths short
 - Wire length affects clock skew and timing

Cell design

- Follow the chip plan
- Plan provides space and power budget information
- Cell electrical design
 - Determine maximum desired delay for cell
 - Estimate external wire length and loading
 - Choose transistor sizes and analyze (Spice)
 - Speed: Fast enough under estimated load?
 - Space: Too big for space budget?
 - Power: Is cell within power budget?
- · May need to adjust chip plan
 - Shift needed resources from other subsystem cells
 - Reallocate saved resources if cell within budget


Cell layout

- Determine size, aspect ratio, pitch
- Identify inputs, outputs, power and ground
- Determine signal priority (metal, poly, diffusion)
- Hints
 - Data inputs at left, data outputs at right
 - Route control signals on polysilicon
 - Route power and ground on top / bottom edges
 - Control is perpendicular to data

Abutment

- Match pitches (width)
- Align inputs, outputs and power busses
- Mirror to overlap power busses

Pitch and aspect ratio

- Assume a square subsystem shape
- Subsystem uses multiple cells, multiple bits
- Cells will be probably be long and thin

I		
I		
I		
I		
I		
I		

Four cells by 12 bits

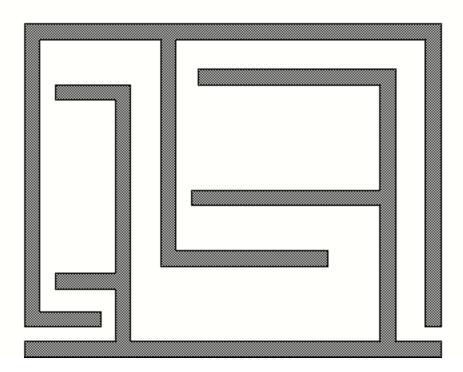
Regularity

- Regularity begins with the choice of algorithm
- Example: Table look-up given a binary key
- Sequential implementation
 - RAM, address register, comparator, controller
 - Read RAM, compare, and increment address
 - At least four different cell types
 - Four separate blocks to be connected
- Content-addressable memory (CAM)
 - Large array of CAM cells
 - Each cell compares itself against pattern
 - One cell type replicated many times

Block placement

- Size of the individual block types
- Aspect ratio or shape of the block types
 - Square aspect ratio's for subsystems are best
 - Easier to pack square subsystems
 - Bit-sliced cells are often long and narrow
 - Necessary to get slices into square subsystem
- Opportunities for wiring by abutment
 - Abutment is always preferable
 - Minimizes both routing effort, length, area
- Length of interconnect to other cells
 - Keep wires short for high speed and low power
 - Critical path cells should be placed together
- Direct access to shared busses
 - Minimize the number of crossovers or unders
 - Use busses judiciously they're slow and huge
 - Long parallel wire runs have crosstalk and noise
- Connection to I/O interfaces
 - I/O circuits and pads are always at chip boundary
 - Pads placed in fixed frame for auto-bonding
 - External pin-out is sometimes predetermined

Power grid

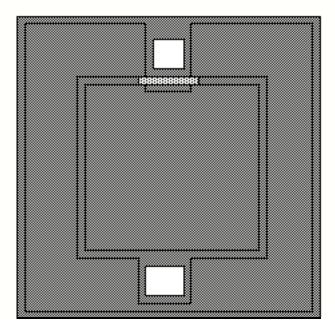

- Power and ground must be routed on metal
- No temporary distributions on poly or diffusion
- Paths enmesh to avoid crossing wires
- Metal wires must be properly sized

Power sizing

- Metal migration
 - Current density = J = A / square-micron
 - If J exceeds threshold, atoms physically move in direction of current flow
- Potential circuit failure
 - Atoms move faster at higher currents
 - Circuit will eventually blow like a fuse
 - Current density is highest at constrictions where cross section is smaller
- Aluminum wires
 - Maximum current density = 2 3 mA / square-micron
 - Use conservative limit of 1 mA / square-micron
- Capacity of typical minimum width wire
 - Feature size = 2 microns
 - Assume 1 micron wire depth, 3 lambda wire
 - Cross section = $2 \times 3 = 6$ square-microns
 - Maximum current = 6 × 1 mA/square-micron = 6 mA
- Estimating peak current
 - · Both transistors are turned on
 - Resistive current path from Vdd to ground
 - Compute resistance through pull-up and pull-down transistors and apply Ohm's law
 - Current through minimum size CMOS inverter
 - Assume gate resistance of 10,000 ohms
 - I = V / R = 5V / 15K ohms = 0.3 mA

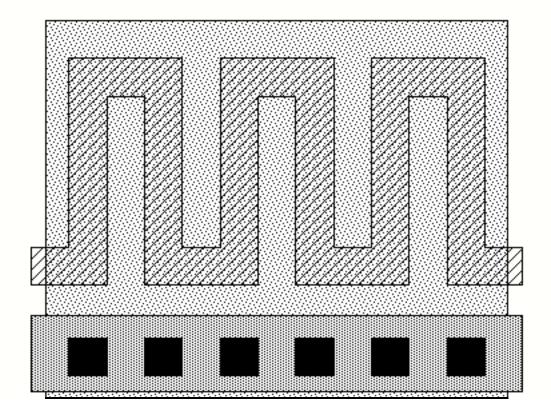
Power layout

- Route on metal over long distances
- Give ground priority over Vdd if necessary
- Minimize power voltage drop
 - Maximum voltage drop of 0.2 V (typical)
 - Voltage drop = I × R
 - Avoid metal to metal contacts high resistance
 - Try to stay on one layer (e.g., metal 2)
 - Keep power wires short
- n- and p-diffusion for power
 - Short, local connection to power rail
 - Use wide paths to lower resistance of connection
- Put output buffers and core logic on separate busses
- · Tips for sizing the grid
 - Estimate current and size small subsystems first
 - Move up design hierarchy summing currents at each level
 - Size the power lines at each level

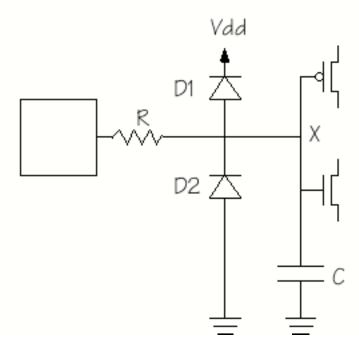


External off-chip connections

- Design I/O circuits to constant width and height
- Place pads to predetermined locations in frame
- Size and placement for automated wire bonding
- Auto bonding requires pad placement at edges
- Typical pad width is 100 μm to 150 μm
- I/O pads use common power busses
- I/O power is separate from logic power grid
- Vdd and ground form two rings around chip
- Use multiple Vdd / ground pads to reduce noise


Power connections

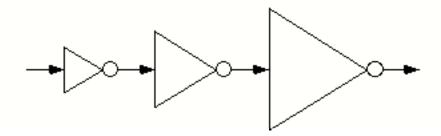
- Power pad is a simple metal pad
- Requires opening in the overglass layer
- One rail must cross over


External outputs

- Need sufficient drive for required rise and fall time
- Add intermediate buffer stage to lower internal load
- Ratio of 2.7 is optimal for speed
- Two inverting stages yield a non-inverting output
- · Susceptibility to latch-up is high
 - I/O currents are high
 - Excessive transients
 - Use guard rings tied to appropriate supply rails
- Driving TTL
 - Logic thresholds match OK
 - TTL low is 0.4V max, TTL high is 2.4V min
 - CMOS low is 0V, CMOS high is 5V
 - CMOS buffer must sink 1.6mA at < 0.4V

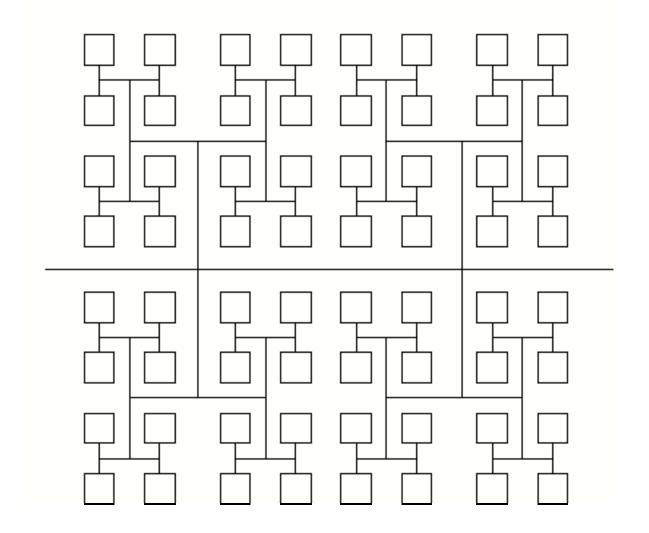
External inputs

- Static input protection
 - MOS transistor gate has high input resistance
 - Oxide breaks down at 40 to 100 volts
 - Diodes turn on when X rises about Vdd, below Vss
 - Resistor R limits peak current through diodes
 - Values of R range from 200 to 3000 ohms
 - R is a long diffusion or poly wire
 - Note RC time constant on input (delay!)
- TTL input
 - Set inverter switch point near 1.4 volts
 - · Choice transistor size ratio to set switch point
 - Add pull-up resistor to pad to improve TTL high

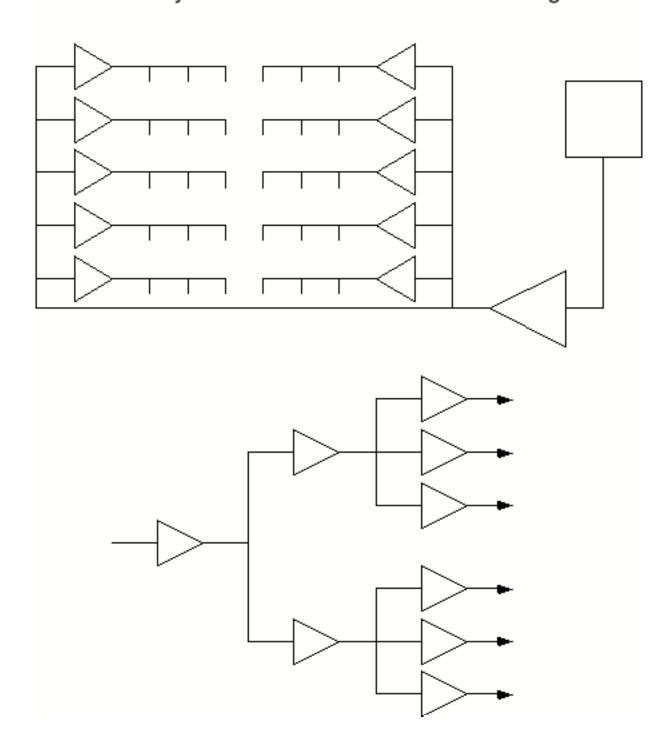


Clock distribution

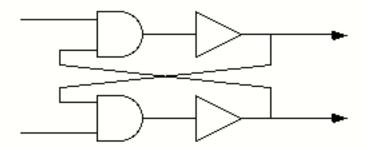
- · Chief problem: clock skew
 - Positive skew: clock arrives too late
 - Negative skew: clock arrives too late
 - Phase skew: clock phases early or late
- Why is skew a problem?
 - Clock pervades every part of chip design
 - · Clock wires are the longest
 - RC constant can exceed delay of local logic
 - Clock must be driven into many cells (high fan-out)
- Techniques
 - Route on metal (RC constant small as possible)
 - Central clock driver
 - Distributed clock drivers
 - Cross-coupled driver design


Central clock driver

- Drive all clock inputs from single point
- Use progressively larger buffer circuits
- Increase transistor width by four per stage


H-tree clock distribution network

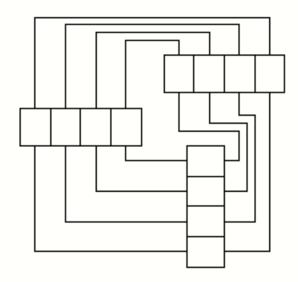
- Recursively layout tree in H'sLoad on the clock becomes quite large
- · Steiner tree
 - Tree of minimum length to interconnect nodes
 - Minimize interconnect length
 - · Minimize load
 - · Need to add nodes to reduce length


Multi-level buffer network

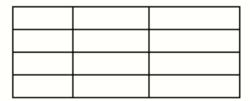
- Receive externally generated clock at input pad
 Drive and distribute clock to major subsystems
 Each subsystem buffers clock and distributes locally
 Relatively small drivers are distributed throughout

Phase skew

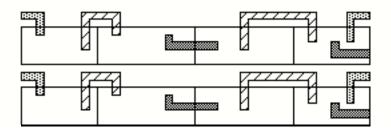
- Multi-phase clock (PHI1 and PHI2)
- Phases overlap (both PHI1 and PHI2 asserted)
- Causes
 - Different loading on PHI1 than PHI2
 - Assymetric circuit technology (longer rise than fall)
- Cross-couple drivers (add feedback)



High speed clocks


- A challenging design problem!
- 100 MHz clock, total clock period is 10 nsec
- Very short rise and fall times (about 0.5 nsec)
- Pulse duration in the 2 nsec range
- Driver
 - Very short rise and fall times
 - Must drive large capacitive load
- Analyze transmission line effects of clock network
- Technique
 - Equal series resistance on all clocks paths
 - Tune drivers to capacitive load on each line

Blocks versus bit-slices


- Logically, we model systems using block diagrams
- Sees like a natural way to lay out a system
- Disadvantages
 - Too much random wiring and long busses
 - Space inefficient

- Pitch matching, abutment win for bit-sliced designs
- Even if cells are a little bigger, total area is less

- Leave wiring channels if necessary
- Useful for standard cell designs (e.g., ITD cells)

Feedback to the plan

- Layout is complete -- time to analyze
- Demonstrate that engineering constraints are met
- Speed
 - Recompute speed of critical path
 - Use real load capacitances
 - Simulate entire critical path or cells on path

• Delay =
$$\sqrt{t_1^2 + t_2^2 + ... t_n^2}$$

- Evaluate drive and delay times on clock wires
- Space
 - · Be sure design fits in payload area (frame)
 - Look for new opportunities for space reduction
 - Reconsider signal to pad assignment
- Current
 - Recompute subsystem current draw
 - Check wire sizing at each level of power grid
 - Is current density less than 1 mA / μm?
- Power dissipation
 - Compute static power dissipation
 - $P_{\text{static}} = \Sigma$ leakage current × supply voltage
 - Leakage current is 0.1 nA to 0.5 nA per gate
 - Find lumped capacitive load of chip (sum of loads)
 - Estimate dynamic dissipation using total load

•
$$P_{\text{dynamic}} = C_L V_{\text{dd}}^2 f$$

•
$$P_{total} = P_{static} + P_{dynamic}$$

Is total power dissipation within max for package?

Material

- Capacitance (λ = 1.5 μm)
 - Unit is capacitance per square micron of area
 - Compute area and multiply by material constant

Gate Polysilicon over field	4.5 X 10 ⁻⁴ 0.5 X 10 ⁻⁴	
n-diffusion (active)	0.9 X 10 ⁻⁴	2
p-diffusion (active)	0.9 X 10 ⁻⁴	pF / μm²
Metal 1 over field	0.2 X 10 ⁻⁴	
Metal 2 over field	0.1 X 10 ⁻⁴	

- Resistance
 - Sheet resistance
 - · Count number of squares of material
 - Multiply by material constant
 - Resistance R = $\frac{\rho}{t} \frac{L}{W}$

ρ = Resistivity
t = Thickness
L = Conductor length
W = Conductor width

Metal 0.5 Ohms / square Silicides 3 Ohms / square Diffusion 25 Ohms / square Polysilicon 50 Ohms / square

Capacitance

- Charge storage
- Wires and gates are all capacitors
- Charge on a capacitor

$$O = C \times V$$

Q is charge, C is capacitance, V is voltage

Capacitance

$$C = \frac{KA}{d}$$

K is dielectric constant, A is plate area, d is distance

- · d and K are given for a particular process
- Capacitance is stated as farads per square-micron
- Precise estimation should account for
 - Area exposed to bulk
 - Side wall exposed to field
 - Side wall exposed to gate region
- Compute area and multiply by material constant
- Typical capacitances by material

Gate	4.5 X 10 ⁻⁴	
Polysilicon over field	0.5 X 10 ⁻⁴	
n-diffusion (active)	0.9 X 10	pF / μ m ²
p-diffusion (active)	0.9 X 10 ⁻⁴	ρι / μιτι
Metal 1 over field	0.2 X 10 ⁻⁴	
Metal 2 over field	0.1 X 10 ⁻⁴	

- Keep wires short and route on metal if possible
- Use diffusion and poly for short local wires only
- Propagation depends upon the RC time constant

Resistance

- Resist the flow of current
- Used as a current limiting device
- Ohm's law

$$V = I \times R$$

V is voltage, I is current, R is resistance

Resistance

$$R = \frac{\rho}{t} \frac{L}{W}$$

ρ is resistivity, t is thickness, L is length, W is width

- Sheet resistance
 - · t is given for a particular fabrication process
 - Resistance is stated as ohms per square
 - Estimation
 - · Break shape into squares
 - Count number of squares of material
 - Multiply by material constant
 - Corners count as 1/3 of a square

1	1	1/3					1/3	1
		1					1	
		1					1	
		1/3	1	1	1	1	1/3	

Resistance (2)

Typical sheet resistances

Metal 0.5 Ohms / square Silicides 3 Ohms / square Diffusion 25 Ohms / square Polysilicon 50 Ohms / square

- · Routing priority
 - Ground rail
 - Clock lines and time critical signals
 - Positive power rail (Vdd)
- Rules of thumb
 - Route power and ground on metal
 - Route signals on metal if possible
 - Polysilicon and diffusion over short distances
 - Use metal for long distances
 - Keep wires short
 - Plan ahead for shortest wire routing
- Crossovers
 - May be necessary to route under metal
 - Use contacts to change layers
 - Metal may cross poly, n-diffusion or p-diffusion
 - Favor polysilicon for signal lines
 - Use diffusion for power connections