VLSI design

Course overview

P.J. Drongowski SandSoftwareSound.net

Course overview

- Technological alternatives
- Basic CMOS design
 - Logic and storage (irsim)
 - Electrical behavior (spice)
 - Building blocks
 - Fabrication process
 - Design rules
 - Chip planning and layout
- Example: A systolic array processor
- Design synthesis
 - Modular design and communication
 - Estimation (again)
 - High level modelling
 - Datapath
 - Control
 - Microcode
 - Finite state machines (FSM)
- Automated synthesis
- Packaging
- Testing

COS / ELE 420

- Design of VLSI systems
 - Room 103
 - · Tuesday and Thursday 1:30 2:45pm
- Instructor
 - · Paul J. Drongowski
 - · Room 211, Tuesday and Thursday 2:45 3:45pm · Extension: X-YYYY

 - · Phone: (609) XXX-YYYY
 - · E-Mail:
- Teaching assistant one
 - · TBD
- · Teaching assistant two
 - · TBD Will handle software tools

Course work

- Assignments
 - Spice simulation
 - Logic / switch level simulation
- Midterm examination
- Project
 - Proposal
 - Progress report
 - Final report

Grading

Assignments 10% Midtern examination 30% Project 60%

Textbook and notes

- Drongowski, VLSI system design notes (required)
- Weste, Principles of CMOS VLSI Design (recommended)
- Wolf, Modern VLSI Design (recommended)
- User manuals, etc. (on demand)

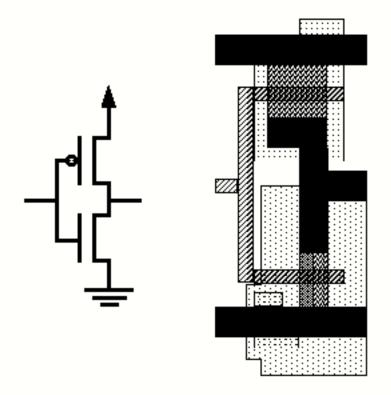
Tools

- C language (high level modelling)
- irsim / cosmos (switch level simulation)
- Spice (electrical simulation)
- fsm2oct and oct (FSM generation)
- ITD dlmv2.2 CMOS standard cells

Project

- Design is an activity not a spectator sport!
- Major portion of the final grade
- Will consume a lot of effort and time
- Deliverables
 - Proposal
 - Brief description of system to be designed
 - Right to the point; emphasize functionality
 - How will you test the system?
 - Suggest early development of C model
 - Three pages
 - Progress report
 - Work completed; work to be performed
 - Major problems encountered
 - Two pages + C language system model
 - Final report
 - Fully exercised irsim model
 - Spice simulation of custom cells
 - Complete layout
 - Develop strong conclusions
- Typical report format
 - Problem statement
 - Approach
 - High level, abstract model
 - Concept of operation and block diagram
 - Chip plan
 - Floor plan (relative size and placement)
 - Pin count and assignment
 - Speed and power estimation
 - Testing and validation
 - Conclusions
 - References

Project ideas


- General guidelines
 - · Small, but significant
 - Completely design and simulate in one semester
 - Essential feature set, not bells and whistles
 - Simple, well-executed design and implementation
 - No "unfinished masterpieces"
 - Use the library
 - Think about the interface, signalling, timing
 - Plan ahead for testing
 - Be pessimistic, be self-critical
 - Be prepared to explain and justify your work
- Example: encryption engine
 - Encrypt and decrypt stream of text
 - Linear feedback shift register
 - Basic engine is simple
 - Interface to microcomputer bus is the challenge
- Example: telegraph keyer
 - Simple finite state machine
 - Again, external interface is the real work
- Example: systolic array
 - Simple processing element replicated many times
 - Try to achieve high density and speed
 - Scan-in, scan-out testing of PE's
- Example: generalized logic block
 - Similar to field programmable gate array cell
 - Programmability (download control info)
 - Interconnection network to form large systems

The times we design in

- Time to market is very short
- Pricing is very competitive
- High quality is critical
- Future designs
 - Problems at the system level
 - Combination of software and hardware
 - · Major building blocks plus glue
 - System integrators
- Tall, thin designers
 - System engineering
 - Get the functionality right
 - Technological implications and constraints
- Concurrent engineering
 - Multi-disciplinary design
 - Team effort
 - Balance many design concerns

Levels of abstraction

- Properties to emphasize and specify
- Properties to hide

Level to level correspondence

- Map design objects and semantics
 - Transistor -> physical transistor site
 - Interconnection -> physical wire
 - Zero or one -> voltage
- Add or suppress details
- Inter-level testing and validation
 - Different fault models
 - More (less) design information to generate tests