VLSI design

CMOS fabrication process

P.J. Drongowski SandSoftwareSound.net

Fabrication process

- Bits to image
 - Add alignment marks and test devices
 - Translate layout geometry to pattern generator tapes
 - Produce glass reticle
 - Reticle image is typically ten times (10X) final size
- Reticle to master masks
 - Step and repeat to obtain master masks
 - Reduce from 10X to actual size (1X)
 - Pack as many chips on wafer as possible
- Master masks to fabrication
 - Print 1X submasters
 - · Save master masks for safekeeping
 - Print working masks for the fabrication line
- Perform photo / processing steps
 - Masks control placement and removal of material
 - Processes
 - Oxidation (growth of insulating layers)
 - Etching (selective removal of material)
 - Deposition
 - Evaporation condensation
 - Sputtering (high energy ions dislodge; reattach)
 - Chemical vapor deposition
 - Diffusion
 - Ion implantation
- Separation
 - Scribe with wafer saw
 - Separate into individual chips
- Packaging
 - Mount or bond chip to carrier or IC package
 - Wire bond (gold or aluminum 1 mil wires)
 - Send to burn-in and final electrical test

Patterning

n-type

- Begin with a bare silicon wafer
- Polished disk of silicon
- Doped for n-type (CMOS p-well process)

SiO₂ n-type

- Grow a thick layer of silicon dioxide
- Expose surface to oxygen gas at 1200 degrees C
 Layer is roughly 10000 A thick
- Will be an insulating layer

Resist SiO₂ n-type

- Coat with an organic photoresist
- Resist will break down under exposure to light

Patterning (2)

- Expose to ultraviolet (UV) light (or low energy X-rays)
 Sensitive to depth of field and wavelength
- Break down exposed portions of resist

Resist	
SiO2	
n-type	

- Diffraction effects around edges of mask
- Alignment between masks
- 1 1.25 micron line widths (typical)

Patterning (3)

- Develop resist
- Selectively expose wafer surface

- Etch through silicon dioxideAttack silicon dioxide but not silicon wafer
- Selective etchant (e.g., hydrofluoric acid)

- Remove remaining resist
- Organic solvent, chromic acid or oxidize away

CMOS p-well process

- Mask 1 p-well
- Deep ion diffusion (about 5 microns)
- Creates p-tub for n-channel transistors

- Mask 2 Thin oxide
- Etch thick oxide to expose p-type drain & source
- Grow thin layer of oxide (about 500 A)

- Mask 3 Polysilicon
- Coat with polysilicon
- Etch to obtain transistor gates and poly wires
- · Gates are self-aligning

CMOS p-well process (2)

- Mask 4 p-plus (p+ or "select" mask)
- Implant ions to form P+ regions
- Drive ions through the exposed thin oxide
- Use resist as an "ion blocker"

- Mask 5 Complement of p-plus
- Form n-regions
- Diffusion or ion implantation

- Mask 6 Contact cuts
- Cover with thick silicon dioxide insulator
- Etch contacts to poly, sources or drains

CMOS p-well process (3)

- Mask 7 First layer of metal
- Etch for contact covers and wires

- Mask 8 Vias (metal to metal contacts)
- Deposit thick oxide layer
- Etch contact holes

Mask 9 - Second layer of metal

Fabrication error

- Over-etching (open circuits)
- Under-etching (short circuits / bridges)
- Misalignment of masks
- Wafer distortion due to high temperature steps
- Mask distortion
 - Run out (accumulation of positioning errors)
 - Glass flatness
 - Magnification
- Focus (depth of field is about 3-5 microns)
- Differences in density of emulsion
- Differences in thickness of photoresist

Defensive design rules

- Well size, spacing and separation
 - Avoid shorts between diffusion and well
 - Ground p-well to overcome high resistance
 - Tie n-well (or n-type substrate) to Vdd
- Transistors
 - Polysilicon gate is (usually) self-aligning
 - Poly must completely cross thin oxide
- Contacts
 - Prevent open circuits due to over-etch
 - Allow metal to flow into via or contact
- Poly doping
 - Avoid p+ doping of n+ polysilicon
- Guard rings
 - Biased diffusion ring around transistor
 - Collect injected minority charge carriers
 - Prevent latch-up
- Metal thickness and separation
 - Uniform metal flow over uneven surface
 - Avoid shorts due to under-etch
 - Avoid open circuits due to over-etch or fusing