Computer and VLSI design

Structured circuit testing

P.J. Drongowski SandSoftwareSound.net

Copyright © 1987-2013 Paul J. Drongowski

Functional testing

- · Design for testability (DFT)
 - Increase fault coverage
 - Improved controllability and observability
 - Extra hardware to load / read-back test data
 - Pattern generation
 - Use internal system structure
 - Consistent with on-chip test hardware
 - Automatic test equipment
 - Access to primary test inputs / outputs
 - Compatible with DFT scheme
- Ad hoc approach
 - Set-up and observe registers via busses
 - Each register has a different read / write procedure
 - Partition logic into testable subdivisions
 - Uses manually generated test patterns (typical)
 - Controllability and observability may be limited
- Structured approach
 - Separate system into sequential and comb'l logic
 - Control / observe memory in a race-free manner
 - Test procedure reduces to combinational logic test
 - Patterns more easily generated automatically
 - Employ some form of scan design
- Built-in test (BIT)
 - Generate test patterns on-chip
 - Compress test results
 - Possibly report go or no-go

Scan design

- Scan-in, scan-out (SISO)
- Partition design into blocks
- Reconfigurable sequential elements
 - Normal operating mode: parallel read / write
 - Test mode: long shift chain to load / read vectors
- Test procedure
 - Put system into test mode
 - Scan (shift) in test pattern
 - Return system to operational mode
 - Perform one clock step
 - Put system into test mode
 - Scan (shift) out test results
 - Compare results, iterate
- Advantages
 - Good controllability and observability
 - Higher coverage
 - Pattern generation for combinational logic only
 - Reduced number of patterns WRT ad hoc approach
 - Fewer patterns just to load and read test data
- Disadvantages
 - Long time to shift in patterns and shift out results
 - Hint: shift in while shifting out
 - Additional signals (test clock, mode, data) to route
 - Requires additional space
 - · Larger latches (i.e., input MUX, dual clock)
 - Routing area
 - Input MUX may increase operational delay

Scan design layout

Level-sensitive scan design

- Level-sensitive scan design (LSSD)
- IBM corporation
- Basic features
 - Storage elements are latches (not flip / flops)
 - Latch responds whenever control input is active
 - Level sensitivity eases timing constraints
 - Input can settle any time during clock pulse
 - Latch is insensitive to clock edge degradation
 - Connected chain of shift register latches (SRL)
- SRL operation
 - Normal operation
 - Shift clocks A and B are inactive
 - Active system clock transfers input D to Q
 - Value is held by latch L1
 - Test mode
 - System clock is inactive
 - Input D is disconnected from latch L1
 - Phases A and B are non-overlapping shift clock
 - Assert B first transferring Q to input of latch L2
 - L2 holds this data and drives SDO
 - Phases A and B are non-overlapping shift clock
 - Assert B first transferring Q to input of latch L2
 - Assert A next transferring SDI into latch L1
 - Next B pulse will transfer new Q to SDO
- Notes
 - Each storage bit uses two latches
 - Clever design can use L2 during normal operation
 - 4% to 20% complexity increase in practice

Built-in pattern generation

- SISO gives good coverage, controllability, observability
- Shift in, shift out of data is time consuming
- Why not generate test patterns internally?
 - Systems can be self-testing
 - Stored memory patterns are not practical
 - Exhaustive testing (via a counter) takes too long
 - Try (pseudo) random patterns
- Pseudo-random number (PRN) generation
 - Linear feedback shift register (LFSR)
 - Feed selected stages into input through XOR gate
 - Tap stages to obtain maximal sequence of values
 - Sequence composition depends on choice of taps
 - LFSR cannot become zero it remains at zero!
- Problems
 - Sequence length to obtain good coverage
 - Random sequence may "hang" sequential logic

Signature analysis

- Technique devised by Hewlett-Packard (~1975)
- Use LFSR to compact test output results
- Similar to cyclic redundancy checking (CRC)
- Test procedure
 - Initialize LFSR to known value
 - Perform operational step
 - Apply test output data to input of LFSR
 - Clock LFSR to new state, iterate
- Final value of LFSR depends upon:
 - Initial value
 - Sequence of output values
 - Number of test steps / LFSR configuration
- Compute expected "signature" using KGD
- Change in any output value yields different signature
- Possible that a fault will still yield correct signature
- "Aliasing" can be eliminated by lengthening LFSR

BILBO

- Built-in logic block observer (BILBO
 Standard LFSR-based test structure
- Multiple modes
 - Parallel load register
 - Pattern generator
 - Signature generator

