Casio CT-S1000V: Master EQ

Beware, this post is going to bury you in numbers. 🙂

I’ve been investigating master equalization in the Casio CT-S1000V. The CT-S500 has the same master EQ, so everything discussed here applies to the CT-S500, too.

The CT-S1000V master EQ is a four band, semi-parameteric equalizer. The four bands are: LOW, MID1, MID2, and HIGH. It’s possible to create and store a USER setting. The edit page let’s you set the center frequency and gain for each of the four bands. You cannot set the band quality factor, Q, which determines the bandwidth spread.

The CT-S1000V provides ten master EQ presets with suggestive names. Casio, unfortunately, do not publish the center frequencies and gains for the presets. Listening to each preset, one thinks “Yeah, that’s bright,” or whatever. Details are missing in action, however.

One can assign LOW, MID1, MID2, and HIGH gain levels to a knob. Thanks to the knob edit function, it’s possible to suss out the gain level for each band within a preset. After much button pushing and knob twiddling, here are the gain levels (dB) for each preset:

                LOW  MID1  MID2  HIGH 
--- ---- ---- ----
Standard 0 0 0 0
Loudness +3 +6 +1 +7
Treble + 0 0 +4 +6
Bass + +3 +4 0 0
Mellow -3 0 0 -8
Bright -4 0 +6 +4
Rock +3 +2 -6 +6
Jazz +3 0 +6 0
Dance +3 +4 +2 +8
Classic -2 +6 +2 0

As to the band frequencies, we turn to the published table of master EQ frequencies:

    LOW frequency range      50Hz to 800Hz 
MID1 frequency range 100Hz to 8.0kHz
MID2 frequency range 100Hz to 8.0kHz
HIGH frequency range 2.0kHz to 16.0kHz

That’s enough to get into the right ballpark.

Yamaha XG Multi EQ

Never content, I worked out a table for Yamaha XG Multi EQ. Multi EQ is an optional master EQ in the Yamaha XG effects chain. Multi EQ is fully parameteric and has five bands: LOW, LOW-MID, MID, HIGH-MID, and HIGH. The LOW and HIGH bands support a peak mode, but are usually configured for shelving.

Multi EQ has five presets: Flat, Jazz, Pops, Rock and Concert (AKA “Classic”).

           Flat          Jazz            Pops          Rock          Concert 
------------- ------------- ------------- ------------- -------------
Freq Q dB Freq Q dB Freq Q dB Freq Q dB Freq Q dB
------------- ------------- ------------- ------------- -------------
Low 80Hz 0 50Hz -6 125Hz +4 125Hz +7 80Hz +3
L-mid 500Hz 0.7 0 125Hz 0.3 +2 315Hz 2.0 -4 200Hz 0.7 +4 315Hz 0.7 +4
Mid 1.0kHz 0.7 0 900Hz 0.3 +4 1.0kHz 0.7 +3 1.2kHz 0.5 -4 1.0kHz 0.5 0
H-mid 4.0kHz 0.7 0 3.2kHz 0.5 -4 2.0kHz 2.0 -4 2.2kHz 1.0 +4 6.3kHz 0.7 +2
High 8.0kHz 0 6.3kHz -6 5.0kHz +6 6.3kHz +2 8.0kHz -3

None of the Q’s are high, so the peaks/curves are rather gentle. [I wish there was an easy way to plot the curves for each preset.]

Of course, you can plug these settings into the CT-S1000V and merrily tweak away.

Yamaha Genos Master EQ

The Yamaha Genosâ„¢ Master EQ is an eight band, parametric equalizer. The Low and High bands are shelving.

Yamaha Genos provides five presets: Flat, Mellow, Bright, Loudness and Powerful:

           Flat          Mellow         Bright        Loudness       Powerful 
------------- ------------- ------------- ------------- -------------
Freq Q dB Freq Q dB Freq Q dB Freq Q dB Freq Q dB
------------- ------------- ------------- ------------- -------------
Low 80Hz 0 80Hz 0 100Hz 0 100Hz +1 140Hz +3
1 250Hz 0.7 0 250Hz 0.7 0 250Hz 0.7 -1 250Hz 1.2 +1 315Hz 0.5 +2
2 500Hz 0.7 0 500Hz 0.7 0 500Hz 0.7 -1 450Hz 1.0 -2 560Hz 1.5 +2
3 630Hz 0.7 0 800Hz 1.0 +1 800Hz 0.7 -2 630Hz 0.5 -1 800Hz 0.5 +2
4 800Hz 0.7 0 1.8kHz 0.5 -1 1.0kHz 0.7 0 1.0kHz 1.3 0 1.6kHz 1.2 +1
5 1.0kHz 0.7 0 3.6kHz 1.0 -2 1.6kHz 1.7 +2 3.6kHz 1.0 +1 3.6kHz 1.6 +1
6 4.0kHz 0.7 0 6.3kHz 1.3 -2 4.0kHz 0.7 +1 6.3kHz 0.8 +1 5.6kHz 1.4 +2
High 8.0kHz 0 9.0kHz -1 7.0kHz +3 8.0kHz +2 10.0kHz +2

The settings match the names. Mellow knocks down the highs. Bright cuts the lows and boosts the highs. Loudness is a bathtub boosting both lows and highs. Powerful kicks all bands up a notch.

If I find a way to discover the CT-S1000V band frequencies, I will update its table. In the meantime, have fun!

Copyright © 2022 Paul J. Drongowski

ChordPro auto-accompaniment: Uses

The ChordPro to Yamaha auto-accompaniment program, cp2mid, translates an extended ChordPro song file to a MIDI file containing Yamaha-compatible auto-accompaniment messages. The MIDI file is compatible with recent mid- and high-end Yamaha arranger workstations like Yamaha Genosâ„¢. Once you transfer the MIDI file to the arranger, it plays like any other Standard MIDI File (SMF). Instead of directly playing notes, however, it tells the arranger’s auto-accompaniment engine what to play: the style, the tempo, the chords and the section (intro, main, fill in, or ending). The arranger displays chords and lyrics in sync with play-back.

What can you do with ChordPro auto-accompaniment? Here’s a few ideas.

Play along with a song from the Web

ChordPro is one of the most widely used song formats on the Web. Pros and punters alike use ChordPro as shorthand lead sheets. You’ve probably seen formatted ChordPro songs like:

 G      G7          C         G 
Amazing Grace! (how sweet the sound)
D
That saved a wretch like me!
G G7 C G
I once was lost, but now am found,
Em D G
Was blind, but now I see.

Presumably, a musician is already familiar with the song’s tempo and melody, needing only to follow and change chords in time.

In extended ChordPro, the chords are embedded within the lyric text:

[G]Amazing [G7] Grace! (how [C] sweet the [G] sound) 
That [G] saved a [G]wretch like [D] me! [D]
I [G] once was [G7] lost, but [C] now am [G] found,
Was [Em] blind, but [D] now I [G] see. [G]

Chords are surrounded by square brackets. Here, we assume each chord is held for a single measure. Songs on the Web are very loose (flexible!) about time. Auto-accompaniment, however, is precise. You will probably need to tighten up timing when using a song file from the Web.

You’ll also see ChordPro directives in song files:

{title: Amazing Grace }   
{key: D}
{artist: Munsoncovers}

Directives express song meta-data and control formatting. Extended ChordPro adds a few new directives for auto-accompaniment:

{title: Amazing Grace }   
{key: D}
{artist: Munsoncovers}
{time: 3/4}
{comment: SouthernGospel is stylecode 7812 3/4}
{stylecode: 7812}
{tempo: 90}
{start_accomp}

You’ll want to add the time signature, tempo, stylecode, and start_accomp directives to the song. The stylecode directive selects one of the hundreds of built-in arranger styles. (A convenient list of codes is included in the distribution.)

You can always leave out the stylecode and select the accompaniment style on the arranger keyboard itself. You can choose one of the preset styles or user styles. Thus, you can try out different arrangements or use a style of your own design.

Finally, extended ChordPro allows annotations which select an accompaniment section like an intro, main, fill-in or ending. Here is “Amazing Grace” ready to go:

{title: Amazing Grace }  
{key: D}
{artist: Munsoncovers}
{time: 3/4}
{comment: SouthernGospel is stylecode 7812 3/4}
{stylecode: 7812}
{tempo: 90}
{start_accomp}

# Introduction
[G][*IA]

# Verse
[G][*MA] Amazing [G7] Grace! (how [C] sweet the [G] sound)
That [G] saved a [G]wretch like [D] me! [D][*FA]
I [G][*MA] once was [G7] lost, but [C] now am [G] found,
Was [Em] blind, but [D] now I [G] see. [G][*FA]

# Ending
[G][*EA]

Don’t forget to turn on the Lyric or Score display. Song chords and lyrics are displayed during play-back.

Jam

Auto-accompaniment is a tireless band! Plug in some chords and play along.

Here is a fast blues shuffle. Copy and paste the 12-bar sections as many times as you like. Change the accompaniment sections to build up energy as the tune progresses.

{title: Shuffle Blues}   
{key: C}
{time: 4/4}
# Style: BluesShuffle (3685)
{stylecode: 3685}
{tempo: 120}

{start_accomp}
[C][*IA]

{start_of_instrumental}
[C][*MA] [C] [C] [C7][*FA]
[F][*MA] [F7] [C] [C7][*FA]
[G7][*MA] [F] [C] [G7][*FC]
{end_of_instrumental}

{start_of_instrumental}
[C][*MB] [C] [C] [C7][*FB]
[F][*MB] [F7] [C] [C7][*FB]
[G7][*MB] [F] [C] [G7][*FC]
{end_of_instrumental}

[C7][*EA]

Experiment with different intros: [*IA], [*IB] or [*IC]. Try different endings: [*EA], [*EB] or [*EC]. An intro or ending will follow the preceding chord as if you played it on the keyboard itself. Generally, the A variations are one measure long. Length of the B and C variations depend on the chosen style. You will need to specify the root chord for each measure in order to keep play-back in sync.

Write a song of your own

Why not write a song of your own? Yamaha’s built-in Chord Step Edit is too detailed and clunky for songwriting. Use cp2mid instead.

{title: Minor Blues}   
{key: Cm}
{time: 4/4}
# Style: SlowBlues (7810)
{stylecode: 7810}
{tempo: 90}

{start_accomp}
[Cm7][*IA]

[Cm7][*MA] My baby left me. [Cm7] [Cm7] Now I'm all alone. [Cm7][*FA]
[Fm7][*MA] My baby left me. [Fm7] [Cm7] And I'm all alone. [Cm7][*FA]
[Ab7][*MA] I still love her, [G7] [Cm7] Won't answer the phone. [Cm7][*FC]

[Cm7][*MB] It's about money, [Cm7] [Cm7] I know it's true. [Cm7][*FB]
[Fm7][*MB] It's about money, [Fm7] [Cm7] I know it's true. [Cm7][*FB]
[Ab7b5][*MB] Can't keep a job, [G7] [Cm7] I am so blue. [Cm7][*FC]

[Cm7][*EA]

It’s easy to change the chord progressions and song structure. Plus, the lyrics are all in front of you. Once the song is loaded, you have the freedom to change the tempo and style on the keyboard. Unlike Chord Step Edit, you can manually choose a user style; you aren’t limited to the preset styles.

Turn on Lyric or Score display. You’ll be able to sing and play along with your new song!

Copyright © 2022 Paul J. Drongowski

ChordPro auto-accompaniment: Implementation notes

I’m prep’ing my ChordPro to Yamaha accompaniment program (cp2mid) for distribution. Please check out the demo. In the meantime, here are a few comments about the implementation.

Command line interface

cp2mid doesn’t have a fancy graphical user interface (GUI). A GUI is too much for a simple tool that translates an extended ChordPro file into a Standard MIDI File (Type 0).

I’m distributing both Java source code and a JAR file. The JAR file contains the compiled Java — the Java executable, if you will. “JAR” is an acronym for “Java Archive” and is produced by the Java archive program (jar), which is part of the Java development environment (JDK). JAR is a way to package up a compiled Java program, hiding all of the interior classes, etc. An end user doesn’t really need to know about JAR.

Given the JAR file, enter the following command line to run cp2mid:

    java -jar cp2mid.jar AFile.cho

“AFile.cho” is the name of an extended ChordPro file to be translated. You can hide the cp2mid.jar file within a Windows BAT file or shell file. Here is cp2mid.bat:

    java -jar cp2mid.jar %1

Nothing complicated, here.

cp2mid recognizes the “.cho” file name extension. It does not recognize any other extensions. If you snag a ChordPro file from the Web, you may need to change its extension to “.cho”. cp2mid replaces “.cho” with “.mid” in order to make the MIDI file name. Thus, “AFile.cho” is translated to “AFile.mid”.

During development and testing, you can run cp2mid starting with the compiled classes, e.g., cp2mid.class. Enter the command line:

    java cp2mid AFile.cho

to run cp2mid. The Java interpreter will look for “cp2mid.class” and the rest of the compiled classes needed by cp2mid. These compiled classes must be available in the same directory as cp2mid.class. “cp2mid”, by the way, is the main class in the application. You’ll need to specify the main class when creating a JAR file. Again, these steps are relevant only to developers.

Java classes

cp2mid has five Java classes:

  • cp2mid (cp2mid.java) Main class and driver
  • SongElement (SongElement.java) Basic element (parts) of a Song
  • Song (Song.java) Represents a ChordPro song in terms of SongElements
  • Song2mid (Song2mid.java) Translates the internal song representation to MIDI
  • MidiFile (MidiFile.java) Represents and manipulates a standard MIDI File (SMF)

The MidiFile class was used in an earlier prototype and still contains a bit of unused legacy code. This may change in future versions. The MidiFile class exploits the standard Java MIDI packages and classes. It creates a MIDI file and inserts MIDI messages (meta, SysEx and otherwise) into a MIDI file.

cp2mid is the boss. It calls on the other classes to do their jobs. Processing is broken into five phases:

  1. Check and manipulate file names.
  2. Read the ChordPro file into a String array, one line per array element.
  3. Translate each line into one or more SongElements.
  4. Translate the SongElements into MIDI.
  5. Write the internal MIDI representation to a Type 0 SMF.

The translation phases do the heavy lifting.

Song and song elements

A Song is a list of SongElements. A SongElement represents one of several ChordPro song constituents:

  • Directive
  • Chord
  • Lyric
  • Line
  • Annotation
  • Comment
  • Tab

All SongElements have the same data members. Each SongElement has a tag which identifies its type. The type determines the validity and interpretation of the other data members.

The Song class translates extended ChordPro to a list of SongElements. This is, effectively, the intermediate, internal representation of a ChordPro song.

ChordPro directives begin with ‘{‘ and end with ‘}’. Usually ChordPro directives control song formating. Extended ChordPro uses key, tempo, time signature, style code, start accompaniment and stop accompaniment directives to issue MIDI messages that will control the accompaniment engine when the MIDI file is played back.

ChordPro chords and lyrics are what it’s all about. Chords begin with ‘[‘ and end with ‘]’. Chords are extended by an optional beat count which specifies how long the chord is held. A lyric is text and may be multiple syllables long (i.e., anything up to the next chord, annotation, or end of line.)

A line element is a marker for important end-of-lines. Line elements affect lyric formating.

Normally, a ChordPro annotation is text added to a song when it is displayed. Annotations begin with ‘*[‘ and end with ‘]’. Certain predefined annotations, e.g., [*MA], [*FA], etc. change the accompaniment section during play-back.

Comments are just that. cp2mid saves the text, but doesn’t do anything with it.

A ChordPro song may contain guitar tablature (tab). Right now, cp2mid ignores tablature. This has not been tested. I’m not sure how to handle or translate tablature as yet.

Song to MIDI

The Song2mid class translates the internal intermediate song representation to MIDI messages and adds the MIDI messages to a MIDI sequence. The MidiFile class helper functions create specific types of messages. Base MIDI message and sequence classes belong to the standard Java MIDI package.

The Song2mid class walks the SongElement list from front to back. Based on element type, it dispatches to an element type-specific handler. The handler adds one or more MIDI messages to the sequence.

A separate blog post describes the MIDI messages.

I tried to encapsulate most of the “Yamaha-ness” in the Song2mid and MidiFile classes. ChordPro is very loose and forgiving when it comes to chord syntax. Song2mid recognizes only the 33 or so Yamaha chord types as defined in the Genos Data List PDF. If Song2mid doesn’t recognize a chord, it issues either a major or minor triad.

Example songs

I will distribute 15 example songs in extended ChordPro and MIDI format. Even if you don’t run cp2mid (or look at its implementation), please take a look at the extended ChordPro songs and try the MIDI files on your arranger. All sorts of fun and crazy things happen in real music (key changes, time signature changes, anticipation) and the examples demonstrate how to handle many exceptional situations. I chose certain songs as examples for testing because they are weird. 🙂

I tested the MIDI files on Genos and I’m curious about their behavior on other arranger keyboards. The MIDI files are similar to those generated by Yamaha ChordTracker. If your arranger plays ChordTracker MIDI files, it should play cp2mid MIDI files.

I don’t want to lead you on — it takes a fair bit of effort to take an Internet ChordPro file and whip it into shape. ChordPro as a formating tool is very lenient and forgiving. Accompaniment requires tighter semantics and precision like most “executable” computer stuff. It’s fun to whip a song into shape, but it requires work.

Copyright © 2022 Paul J. Drongowski

Hidden arranger smarts: file system SysEx

What to do with the ennui that sets in on New Years Day? Explore unexamined territory!

Yamaha Musicsoft Downloader is a valuable tool for Yamaha arranger keyboardists. Downloader lets you transfer MIDI song files, registrations file, text files, etc. between a Windows PC and a compatible Yamaha arranger keyboard. It even works with digital home pianos, too.

Most folks transfer their files using a USB jump drive. This isn’t a big deal when moving a few files maybe once or twice a day. When I’m developing a new style, however, I swap a drive quite frequently — dozens of times a day. All that physical swapping causes wear and tear on USB ports. I often use a short USB extender to reduce wear on the computer and/or instrument USB ports. I’d rather have a cheap cable fail than a USB port on a motherboard.

Downloader saves a lot of that wear and tear by copying data over a cable instead of a USB drive. Downloader supports both USB and good ole 5-pin MIDI transfers. Thus, folks who own older pre-USB keyboards can use Downloader, too.

Downloader has been around a while — one reason why it’s backward compatible. The user interface is a little bit dated, but it works and who cares? To move a file, you add the file to the holding area at the top of the screen, then move the file to its final destination by pressing one of the big arrow buttons. Classic.

Yamaha Musicsoft Downloader in action

The screenshot shows Downloader connected to Genos over 5-pin MIDI. The file “Downtown.mid” is in the temporary storage area. The lower left hand panel navigates instruments, drives and directories. The lower right hand panel selects files within a directory.

So, how does it do the actual transfer?

Because Downloader is old skool, it does it with MIDI. (Even over USB.) Downloader was written back in the day when MIDI was king and could do anything and everything. As another example, I give you the MIDI Sample Dump Standard (SDS) for representing and transferring samples to/from early-day samplers.

Downloader performs a dance with the target instrument. Like SDS, Downloader and the target instrument follow a set of rules — a protocol — for communication. To my knowledge, Yamaha has never published this protocol. It’s all done via MIDI System Exclusive (SysEx) messages although you won’t find these message types in the instrument’s reference manual or data list file. Nonetheless, your instrument is smarter than you think!

Of course, a lot depends upon the storage and capability of the target instrument. Entry-level instruments may be oblivious to Downloader or maybe just transfer back-up files. Mid- to higher-end arrangers are fully capable.

I decided to get a taste of this hidden protocol by monitoring the exchange of MIDI SysEx messages between Downloader and Genos. I split the MIDI stream and watched the dance as Downloader makes contact with Genos and acquires top-level directory information. After watching this process several times, I tried sending my own SysEx messages via MIDI-OX. (What a great tool!)

Here is a typical start-up sequence. It shows Genos’ response for each SysEx message that I sent.

F0 43 50 00 00 00 01 F7 
Genos responds: F0 43 50 00 00 00 02 01 01 F7
F0 43 50 00 00 02 01 F7
Genos responds: F0 43 50 00 00 02 02 33 00 01 00 00 01 00 01 00 00 1B
78 17 3F 01 00 00 00 00 00 00 01 7F 00 00 00 32 00 00
00 00 00 00 00 00 00 00 00 00 00 00 27 08 00 00 02 00
04 7F 7F 7F 7F F7
F0 43 50 00 00 01 01 F7
Genos responds: F0 43 50 00 00 01 02 00 F7
F0 7E 7F 06 01 F7 Identity request
Genos responds: F0 7E 7F 06 02 43 00 44 42 1C 0A 00 00 01 F7
F0 43 50 00 00 01 00 01 F7 Make connection (Genos is connected)
Genos responds: F0 43 50 00 00 01 02 01 F7

The first three out-bound messages test for a response. Downloader uses these messages as a connection check. The identity request message is a MIDI standard message for obtaining the identity of a musical device or instrument. Genos identifies itself as Yamaha (0x43) and model.

After getting the instrument identity, Downloader initiates the actual connection. When connected, the Genos display changes to a special background with the message: “Connected to the computer or smart device.” Genos is now listening for Downloader commands.

Thereafter, Downloader asks Genos for device, file and directory information. Here is the inquiry about top-level devices:

F0 43 50 00 05 0B 00 00 F7     Request drive 0 information 
Genos responds: F0 43 50 00 05 0B 01 42 00 00 05 00 55 53 45 52 F7
U S E R

Yamaha arranger people will recognize the USER drive where all user directories and files are kept. Genos returns the name for device 0: “USER”. If you have a USB jump drive attached, you will see:

F0 43 50 00 05 0B 00 01 F7     Request drive 1 information 
Genos responds: F0 43 50 00 05 0B 01 42 00 00 05 00 55 53 42 31 F7
U S B 1

Makes me think that Genos tells Downloader how many devices are available — maybe in response to the connection command?

Moving on, Downloader interrogates Genos about the directories and files at the next level down in the file hierarchy.

F0 43 50 00 05 04 00 3F 00 08 00 30 3A 5C 2A 2E 2A 00 F7    dir 0:\*.* 
? 0 : \ * . *
Genos responds: F0 43 50 00 05 04 01 10 31 39 38 30 20 31 20 31 20 30
1 9 8 0 1 1 0
20 30 20 30 03 01 00 00 00 03 00 2E 00 F7
0 0 .

You’ll notice that some command arguments and responses are ASCII characters, including the date and time stamps.

The number of subdirectories and files varies. So, Downloader and Genos go into a “loop” in which Downloader asks for the next entry (i.e., list item) and Genos responds with the entry’s information:

F0 43 50 00 05 05 00 F7        Request next dir list item 
Genos responds: F0 43 50 00 05 05 01 10 32 30 32 31 20 36 32 36 20 30
2 0 2 1 6 2 6 0
34 34 35 34 03 01 00 00 00 06 00 53 4F 4E 47 00 00 F7
4 4 5 4 S O N G

This loop continues until the list of available items is empty:

F0 43 50 00 05 05 00 F7        Request next dir list item 
Genos responds: F0 43 50 00 05 7F 01 01 01 42 00 00 F7 End of list

Genos responds with a unique message saying “no more” (0x7F).

Finally, it’s time to close the connection:

F0 43 50 00 00 01 00 00 F7     Disconnect command

Genos drops the connection and returns to normal operation, that is, it displays its usual main screen.

Sharp-eyed readers have noted the “ChordTracker” subdirectory in the “SONG” directory. ChordTracker created this subdirectory when I transfered an accompaniment from my iPad to Genos. How did ChordTracker create the subdirectory and perform the transfer? That’s new territory (more SysEx) to explore!

Well, that was one way to stave off the New Year’s blues. 🙂

Copyright © 2022 Paul J. Drongowski

ChordPro to MIDI accompaniment: Demo

Work continues on my Java program to translate ChordPro songs to Yamaha accompaniment (SMF). The code is fairly stable and mostly I’ve been writing example songs in ChordPro format for testing. The range and variety of musical craziness is amazing: weird chords (“Superstition”, “Michelle”), changing time signatures (“Two Of Us”), changing key signatures (“My Girl”), unusual time signature (“Everybody Wants To Rule The World”), and more.

Today, I want to give a taste of what to expect. I plan to distribute the Java executable as a “jar” file and will also make the source code available. To keep things simple, the program runs from a command line — no graphical user interface:

    java -jar cp2mid.jar ItsTooLate.cho

The program is named “cp2mid” and “cp2mid.jar” is the Java executable. We need to invoke java explicitly because it is an interpreted language and the executable consists of Java bytecodes.

The above command produces a Type 0 Standard MIDI File (SMF) named “ItsTooLate.mid”. This file must be sent to a Yamaha arranger like Genosâ„¢ by whatever means you have at your disposal, i.e., a USB flash drive or Yamaha Musicsoft Downloader.

Here is the first part of “ItsTooLate.cho”. The song begins with set-up directives including “{stylecode: }”, which selects the accompaniment style (“Cool8Beat”). You could leave out key, time, tempo, or stylecode and go with the current panel settings. This flexibility allows experiments with different tempos or different styles, including USER styles.

{t: It's Too Late }   
{key: Am}
{artist:Carole King}
{time: 4/4}
{tempo: 104}
# Style: Cool8Beat
{stylecode: 5635}

{start_accomp}
[Am7][*IA]

# Introduction (intro riff)
{start_of_instrumental}
[Am7][*MA] [D6] [Am7] [D6]
{end_of_instrumental}

{c: Verse 1}
[Am7] Stayed in bed all morning just to [D6] pass the time.
[Am7] There's something wrong here there can [D6] be no denying.
[Am7] One of us is changing
Or [Gm7] maybe we've just stopped [Fmaj7] trying. [Fmaj7][*FA]

{start_of_chorus}
And it's too [Bbmaj7][*MB] late baby now [Fmaj7] it's too late
Though we [Bbmaj7] really did try to [Fmaj7] make it.
[Bbmaj7] Something inside has [Fmaj7] died
And I can't hide [Dm7] and I just can't [Esus4:2][*FB] fake it. [E7#9:2]
{end_of_chorus}

The screenshot above shows the Genos song player with “ItsTooLate.mid” loaded and ready. Choose either the Lyrics or Score display (optional). Then hit play!

The next screenshot shows the Lyrics display. It should look familiar if you have played a Yamaha arranger. The arranger highlights the current lyric syllable or phrase in time with playback. Compare the screenshot with the ChordPro song and you’ll get an idea of what to expect for each ChordPro construct. A lyric phrase is not broken into syllables, but is associated with the chord preceding the phrase.

The following screenshot shows the Score display. It’s a different view of the same song. Lyrics appear below the staff and chords appear above. The time and key signature are displayed on the first page. Follow the bouncing ball during playback.

So, how does it sound? Listen to a quick demo (MP3) with me noodling on top.

That’s a taste of what’s ahead. I hope you will try cp2mid when it’s ready.

Copyright © 2021 Paul J. Drongowski

ChordPro auto-accompaniment: MIDI messages

I’ve made quite a bit of progress with my Java program that translates extended ChordPro songs into a Yamaha-compatible accompaniment MIDI file. This blog post describes the stuff inside the MIDI files produced by the program (cp2mid).

The MIDI file contains MIDI meta and SysEx (System Exclusive) messages which drive the Yamaha accompaniment engine. When the MIDI file is played back on a compatible Yamaha arranger keyboard (e.g., Genos), the keyboard generates an accompaniment as directed by the chord and section change messages in the MIDI file. It may sound odd to hear this, but the MIDI file doesn’t contain a single note ON or note OFF message! It’s all accomplished through control messages and the accompaniment is produced in real-time.

The MIDI file is a Type 0 Standard MIDI File. It starts with a bunch of set-up messages:

  F0 05 7E 7F 09 01 F7                           GM Reset 
F0 08 43 10 4C 00 00 7E 00 F7 XG System ON
FF 58 04 04 02 18 08 Time signature
FF 59 02 02 00 Key signature
FF 51 03 07 EF eb Tempo
F0 0D 43 73 01 51 05 00 03 04 00 00 2C 05 F7 Style code
F0 04 43 60 7A F7 Accompaniment Start

All of these message types are defined in the Yamaha Genosâ„¢ Data List PDF document. The messages beginning with “F0” are System Exclusive (SysEx) messages. Messages starting with “FF” are MIDI SMF meta messages. All messages are Yamaha proprietary (code “43”). The trick, of course, is filling in the correct values for the tempo, key, etc.

GM Reset and XG System ON initialize the tone generator. Time signature, key signature and tempo are SMF meta messages which control and arranger’s sequencing engine. The Style Code message selects one of the many built-in accompaniment styles. The Accompaniment Start message tells the accompaniment engine to get busy.

Once set-up is complete, the rest of the MIDI file consists of Chord, Lyric and Section Control messages. Again, these messages are all defined in the Genos Data List PDF document.

Here is a typical chord message:

    F0 08 43 7E 02 37 08 37 7F F7          Chord Bm/B

It tells the accompaniment engine to play a B minor chord (0x37 0x08) with a B bass note (0x37 0x7F). The neatest thing about the ChordPro conversion program? It makes it easy to play and hear difficult to finger chords like slash chords and unusual chord types like Cminmaj7-9.

Lyrics are inserted into the MIDI file using the SMF Lyric meta message:

    FF 05 len [Data]

For example, this Lyric meta message:

    FF 05 04 79 6F 75 20      0x79='y', 0x6F='o', 0x75='u', 0x20=' '

encodes the syllable text “you “.

No attempt is made to separate lyric text into syllables or to assign syllables to individual beats. When a lyric phrase is encountered in the ChordPro file, the phrase is inserted right after the preceding Chord message, i.e., it has the same MIDI timestamp as the preceding Chord message.

A Section Control message selects the current accompaniment section (pattern). The following message:

    F0 06 43 7E 00 09 7F F7               Section Control Main B: ON

selects the “MAIN B” section (0x09 0x7F). Because playback is fully automated, section changes are precise.

The penultimate message stops accompaniment:

    F0 04 43 60 7D F7                     Accompaniment Stop

The final SMF meta message ends the SMF sequencer track:

    FF 2F 00                              End Of Track (mandatory)

Overall, that’s a lot of power with just a few message types! Most of the Java code involves scanning the ChordPro input, book- and time-keeping. Java has a good MIDI library which makes coding easier.

As to time-keeping, all MIDI events (messages) have a timestamp. Messages issued from set-up directives before start_accomp occur in the first song measure. The start_accomp directive advances the MIDI clock to the first beat of the second measure. Thus, the first chord and lyric (if any) occurs at the beginning of the second measure. Thereafter, MIDI time advances in accord with each chord beat count (default: a full measure as determined by the current time signature).

Look here for more information about ChordPro format.

Copyright © 2021 Paul J. Drongowski

ChordPro for Yamaha accompaniment

Time to take the wrapping paper off my current development project.

It starts with ChordPro. ChordPro Format is perhaps the most popular notation for rock, pop, soul and folk tunes. A ChordPro format song contains lyrics and chords, usually formatted for easy display and reading. Strummers and plinkers everywhere use ChordPro songs as lead sheets.

It ends with Yamaha Genos, Tyros and PSR accompaniment. Genos — and other recent Yamaha arrangers — play MIDI files containing chords and lyrics. Genos displays either a running score or lyrics (plus chords) during playback.

What is missing is the bridge between ChordPro and Genos. My current project is the bridge. It translates an extended ChordPro file to a MIDI file which is compatible with Genos and other mid- to high-end Yamaha arranger keyboards. So far, I have a prototype up-and-running.

I emphasized the word “extended” because ChordPro format by itself is not sufficient for playback. The format does not have a precise notion of time. ChordPro relies on the musician to interpret the song on the fly. It assumes that the musician has heard the song before and knows when to change chords. As usual with computer stuff, playback needs more precise semantics. That’s where the extensions come into play.

Since there are a gazillion ChordPro songs on the Interwebs, I wanted to play back ChordPro files with as few modifications as possible. Thus, the first rule is “Each notated chord is held for one measure.” Of course, many songs change chords within a measure, too. (Even “Louie, Louie”!) Enter the first extension. A notated chord may have an optional beat count which specifies the number of beats to hold the chord, or more precisely, the number of time divisions (quarter notes or eigth notes) to hold the chord.

As I discovered during testing, existing ChordPro song files have a fair number of warts. Sometime the chord progressions are whack. The files often have random playing directions which ChordPro happily snarfs up as lyric text. ChordPro is very forgiving as it is primarily a formatting representation and tool. The initial goal — playing a ChordPro song with just a few additions — is unrealistic; expect to do some clean-ups.

Plain, unchanging accompaniment is pretty boring after a short while. Therefore, I added annotations for section changes, fills and breaks. Certain ChordPro directives are optional, but strongly recommended: key, tempo, and time signature. Tempo and time signature obviously guide playback speed and the interpretation of chord hold time. The key signature will set the arranger’s score display to the appropriate key.

Stylecode is an extension. It is a decimal number that selects the arranger accompaniment style, .e.g., 60sVintageRock, Oldies R&R, etc. A style name would be more convenient, but then I would need to develop a style name to code database for each arranger. Forget it; keep it simple. Besides, the PSR Tutorial site has such spreadsheets — just look up the style code yourself.

Start_accomp and stop_accomp are extensions, too. Start_accomp should (must) appear after all the basic playback settings are made. When the MIDI file is played back, the arranger will start or stop the accompaniment engine as directed. Start_accomp begins playback from the second measure; the first measure is reserved for set-up.

The translation program does not implement every and all ChordPro directive. It ignores formatting related directives and it doesn’t handle tablature (tab).

Let’s put all of this together and look at an example. Here is a snippet of “It’s Too Late” by Carole King.

{t: It's Too Late } 
{key: Am}
{artist:Carole King}
{time: 4/4}
{tempo: 104}
# Style: Cool8Beat
{stylecode: 5635}
{start_accomp}

[Am7][*IA]
# Introduction (intro riff)
[Am7][*MA] [D6] [Am7] [D6]

{c: Verse 1}
[Am7] Stayed in bed all morning just to [D6] pass the time.
[Am7] There's something wrong here there can [D6] be no denying.
[Am7] One of us is changing
Or [Gm7] maybe we've just stopped [Fmaj7] trying. [Fmaj7][*FA]

{start_of_chorus}
And it's too [Bbmaj7][*MB] late baby now [Fmaj7] it's too late
Though we [Bbmaj7] really did try to [Fmaj7] make it.
[Bbmaj7] Something inside has [Fmaj7] died
And I can't hide [Dm7] and I just can't [Esus4:2][*FB] fake it.[E7#9:2]
{end_of_chorus}

Lines beginning with ‘#’ are comments. Lines beginning with ‘{‘ are directives. Each directive must have a closing ‘}’ and consist of one line only. My translation tool supports the following simple directives:

  • title (or ‘t’): Song title
  • key: Song key
  • artist: Performing artist
  • composer: Song composer
  • copyright: Copyright information
  • comment (or ‘c’): Comment to be ignored
  • time: Time signature
  • tempo: Song tempo in BPM
  • stylecode: Yamaha style code (a decimal number)
  • start_accomp, stop_accomp: Starts and stops the accompaniment

As I mentioned, time, tempo and stylecode are optional, but necessary — unless you are willing to roll with the defaults. Start_accomp must be the final directive before the first chord and lyric in the song. Start_accomp generates the magic message needed to start accompaniment.

Chords look like regular ChordPro chords. Chord names are surrounded by square brackets, e.g., “[Am7]”. Nothing looks amiss until the end of the chorus, e.g., “[Esus4:2]” and “[E7#9:2]”. “:2” is a beat count. Each chord is held for two quarter notes — quarter notes because the number of divisions per bar (the “denominator”) of the time signature is four. It’s our job to make sure that the counts add up to a full measure in order to keep everything synchronized to measures.

The translation program (yet unnamed!) is very forgiving when it comes to chord spelling. However, it only recognizes and generates the 34 Yamaha chord types which are supported by Yamaha arrangers:

    Maj        7        min        minMaj      aug      dim 
Maj6 7sus4 min6 minMaj7 aug7 dim7
Maj7 7b5 min7 minMaj7-9
Maj7#11 7-9 min7b5
Maj9 7#11 min9
Maj7-9 7-13 min7-9
Maj6-9 7b9 min7-11
7aug 7aug
8
5
sus2
sus4

If the chord is not recognized, you will get a major or minor triad.

ChordPro allows annotations, that is, constructs beginning with “[*” and ending with “]”. Annotations ordinarily are playing instructions that are displayed in a pretty-printed ChordPro song. Annotations are extended with accompaniment section control commands:

  • Introduction: [*IA] [*IB] [*IC] [*ID]
  • Main section: [*MA] [*MB] [*MC] [*MD]
  • Fill in: [*FA] [*FB] [*FC] [*FD]
  • Break: [*BR]
  • Ending: [*EA] [*EB] [*EC] [*ED]

A section control command usually follows a chord and takes effect at the same time as the chord change.

ChordPro supports paired formatting directives like:

    {start_of_chorus} 
...
{end_of_chorus}

I am currently experimenting with these directives to control lyric and chord formatting. Yamaha’s lyric display allows line breaks and page breaks. Start of chorus (abbreviated “{soc}”) generates a page break. I added a new directive pair for handling long instrumental breaks, e.g.,

    {start_of_instrumental} 
[Cmaj7][*MC] [Fmaj7] [Fmaj7] [Am7] [Gm7] [Fmaj7]
[Dm7] [Esus4:2][*FC] [E7#9:2]
{end_of_instrumental}

Yamaha’s lyric display runs chords together when no lyric text is present. The new directive provides some separation between chords by generating filler lyric text (dashes, to be exact).

That’s the story. Testing continues. I will make the Java source code available as soon as possible. So far, so good. The concept works.

Copyright © 2021 Paul J. Drongowski

Critique: Genos™ drawbar organ

I like the Korg Module Pro “GospelOrgan” patch, so I tried to create a sound-alike voice on Yamaha Genos. Genos and MODX share the same waveforms and DSP effects, and I may port the result to MODX, too.

The experience recalled my previous misgivings about the rotary speaker simulation and limitations of the Genos DSP effect implementation. I will amplify those comments here.

Mid- to upper-level Yamaha arranger workstation have long had a drawbar organ feature which Yamaha calls “Organ Flutes.” This feature dates back to 1999, appearing in the PSR-9000 keyboard. Although a few details have changed over the years, Yamaha has not substantially overhauled Organ Flutes. It’s time, Yamaha — the world has moved on. I’d love to see the new YC organ technology in Genos. It’s the flagship of the arranger line and YC organs would definitely differentiate Genos from its lower-cost brethren.

Yamaha Organ Flutes main voice editing screen

The main, tweakable organ parameters are:

  • Nine drawbars
  • Percussion (first note/each note, length)
  • Percussion pitch (4′, 2-2/3′, 2′)
  • Response (onset delay of drawbar and percussion sounds)
  • Vibrato (on/off, depth, speed)
  • Rotary speaker speed (slow/fast)
  • Volume level (1 to 8)
  • DSP effect (e.g., rotary speaker)

For B-3’ers, the 4′ percussion pitch is the 2nd harmonic setting and the 2-2/3′ percussion pitch is the 3rd harmonic setting. The 2′ pitch supports non-Hammond organs which require it.

Compared with a contemporary clonewheel, one immediately notes a few missing features:

  • Vibrato only, no chorus
  • No key click
  • No rotor noise
  • No leakage

Overall, the Genos B-3 is super clean and polite — not vintage. MODX (Montage) provides key click, rotor noise (grit) and rotor whistle waveforms. Why does Genos lag behind? Although MODX is AWM2, not modeling, these extra waveforms are better than nothing at all.

The Genos synthesis engine is also AWM2 sample-playback and AWM2 provides the Organ Flutes vibrato. Organ Flutes does not simulate the one-of-a-kind Hammond vibrato/chorus scanner. The Korg Module “Gospel Organ” voice incorporates C-3 chorus and the AMW2 vibrato just doesn’t cut it (head-to-head comparison). I had to substitute Genos’ V-2 setting and move on.

Simplified, graphical rotary speaker interface

If you want to change the rotary speaker type, you need to dive through the effect setting button at the top of the Organ Flutes screen. After selecting the insertion effect, Genos displays a skeuomorphic (graphical) rotary speaker cabinet with a few knobs. In the screenshot above, we get rotary speed, horn and rotor balance, and microphone left/right angle. Like many (most?) rotary speaker simulations, the rotary effect emulates the sound of a mic’d up, stereo recording of a Leslie, not a horn and rotor moving air in a room.

Additional rotary speaker (DSP) parameters are changed by tapping the “Detail” button in the lower right corner. deep-diving reveals a few more deficiencies:

  • Missing parameters due to a limitation on the number of DSP effect parameters (16 parameters maximum)
  • Only one insert effect (typically the rotary speaker)
  • Volume control is post-effect and does not affect overdrive

Here is a little more information about each issue.

First page of rotary speaker parameters

At heart, the Genos (PSR, Tyros) sound engine implements the Yamaha XG synthesis and effects architecture. The XG architecture allows up to sixteen (!6) parameters per DSP effect unit. Unfortunately, Yamaha’s DSP engineers are creating effect algorithms (AKA “effect types”) with more than sixteen parameters! The MODX ROTARY SPEAKER 2 algorithm has eighteen (18) parameters. The Genos REAL ROTARY effect type is the same algorithm as MODX. However, only 16 parameters are accessible or stored on Genos. The two missing REAL ROTARY parameters are:

  • Slow-Fast Time of Rotor
  • Fast-Slow Time of Rotor

You cannot change these rotor ramp times on Genos, yet, you can change them on MODX.

This issues affects the Genos UNI COMP compressor algorithm (MODX: UNIVERSAL COMPRESSOR DOWN). Dare I mention the inability to specify a side-chain part, too? People are trying to create EDM on arrangers.

The XG architecture allows only one insert effect per part. The Organ Flutes insertion effect is typically a rotary speaker simulator. The MODX effect architecture, on the other hand, allows two insert effects per part. Yamaha synths take advantage of the second insert effect to add overdrive or vintage EQ:

  • Rotary speaker 1 → Multi FX (Distortion Solo)
  • Rotary speaker 2 → VCM 501 EQ (Flat)
  • Amp Simulator 3 (Tube) → VCM 501 (Flat)
  • Amp Simulator 1 (Stack 2) → Rotary Speaker 1
  • VCM 501 EQ (Flat) → Rotary Speaker 1

The rotary speaker drive alone is not enough to warm up the basic sound nor is it enough to get a sweet, realistic overdrive with guts. I experimented with the Genos REAL ROTARY effect and got some very squirelly results at high drive levels. The algorithm can be pushed in unexpected, undesirable ways while searching for true funk.

Unlike a real Hammond/Leslie combination, the Genos expression pedal controls post-effect part volume. This is like putting the volume control after the Leslie speaker. A Hammond B-3 pedal controls the level into the Leslie pre-amp. Thus, the pre-amp frequency characteristics and overdrive track the Hammond pedal. The Yamaha YC61 modeling gets this right. Putting the volume pedal before the pre-amp lets the player get clean or dirty in the same way a guitarist uses picking and/or the guitar volume knob to distort or clean up their tone.

If the Genos developers must work around the XG architecture, they should consider a new effect algorithm that combines overdrive with the rotary speaker simulation. The algorithm should allow foot pedal control over the Leslie pre-amp input level. Genos and other PSRs allow wah pedal control, so they obviously know how to achieve this capability within the current architecture.

Copyright © 2021 Paul J. Drongowski

Random answer day (1)

Maybe it’s the first day of the regular NFL season or the phase of the moon. Here’s a recap of a few questions that came into the forums.

How are arranger/synth preset voices stored? First, one may ask, “How is a preset represented?” Typically, a preset voice consists of waveforms (AKA “samples”) and voice (meta-)data. The voice data control how the sample-playback engine applies filtering, amplitude envelope, modulation and so forth. The waveforms, of course, provide the basic digital audio data.

There is such a broad range of arranger/synth products at different price points, that the amount of storage and the kind of storage varies quite a lot.

The lowest of the low in the Yamaha range: PSS-A50, -E30, -F30, PSR-F51. Presets are stored on a 2MByte serial flash ROM and are loaded into the processor (SWLL) at start-up. The 2MBytes include code, too! Tone generation is integrated into the SWLL. Insanely small, and very low cost.

The highest of the high in the Yamaha range: Genos. Factory presets are stored in four 1GByte ONFI NAND flash devices. Expansion memory consists of two 1GByte ONFI NAND flash devices. Wave memory connects directly to external tone generators (SWP70).

I’ve looked at the diagrams for Genos and I’m not sure about the size and function of those memory units, especially Genos USER memory and expansion memory.

Yamaha confuses people when they speak of “user memory,” “internal memory,” etc. They are usually referring to logical, user visible storage.

When getting down to the hardware level, there are many different physical memory units. since we’re not discussing fairy dust or magic, the logical storage must be assigned to one or more physical memory units. And, of course, the physical memory units themselves may be composed of multiple integrated circuits. The other dimension is “what communicates to what.” Memory is passive and needs a processor to initiate reads and writes and to do something with all that data. At the physical level, a memory unit essentially belongs to a single processing unit (host computer, tone generator) and directly communicate with it.

Sometimes I think of the SWP70 as a parallel processor just like a GPU. The CPU/SWP70 is not exactly analogous to host CPU plus GPU, however. Graphics memory is shared between CPU and GPU. The SWP70 does not share its waveform memory with anybody — it’s dedicated to the tone generator. That’s why installing an expansion pack (voice library) is kind of slow and technically complicated, and why a Genos reboot is required.

Yamaha Genos SWP70 tone generators

Staying with Genos, Genos has two SWP70 tone generators: one handles factory presets and the other handles user expansion voices. The factory SWP70 has 4GBytes of flash memory while the expansion flash memory has 1GB of flash memory. That’s physical memory. Yamaha boosted the effective capacity to 3GB expansion through compression.

The SWP70s also have DSP RAM. As a user, you never know about this memory. It’s scratchpad memory for DSP effects. Physically, the DSP RAM is completely separate and independent from the waveform memory, and communicates with only its parent SWP70.

Yamaha Genos Host CPU

The host CPU has two kinds of memory (as determined by its bus interfaces): 1GB of working RAM on the CPU memory bus (EMIF) and two embedded eMMC memory devices that act like solid state storage drives (MMC0 and MMC1). As far as a user is concerned, the user never sees the 4GB eMMC drive (MMC0) just like you don’t see the DSP RAM; it’s hidden. The MMC0 drive contains the Linux operating system kernel and the root file system.

The user sees only part of the second 64GB eMMC drive (MMC1). The user sees the logical storage which Yamaha calls “Internal memory” or “USER drive.” What’s in the remaining 6GB? I don’t know — Yamaha haven’t left any clues.

What about Montage and its 5.67GByte waveform memory? 5.67GB is the capacity when the waveforms (samples) are compressed. Again, this is logical storage capacity.

Yamaha Montage SWP70 tone generators

Montage has two SWP70s. One SWP70 is dedicated to FM-X and it does not have waveform memory. The second SWP70 handles AWM2 synthesis (sample playback) and has waveform memory connected to it. The waveform memory consists of four 1GByte devices totaling 4GBytes. Thanks to Yamaha’s proprietary compression, Montage stores 5.67GBytes-worth of data in the physical waveform memory. The remaining space, 1.75GB physical, is available for user samples.

How does sample capacity relate to price? It doesn’t. Component cost is outweighed by manufacturing costs, software development cost and sound design cost.

If the memory components are so cheap, why isn’t there more waveform memory? If there was more, then you wouldn’t buy the Mark II model, would you? 🙂

I understand that E30/F30 do NOT offer velocity sensitivity. My question is about the internals. Is it confirmed that it’s a keybed with two switches per key, that just aren’t supported in software?

Yes, you need to be careful here. There are hardware model differences: E30 and F30 are not velocity sensitive. A50 is velocity sensitive.

There are two different keybed printed circuit boards (PCB). Yamaha part number VAY27800 for F30/E30 and VAY28500 for A50. The A50 PCB has the necessary diodes installed for velocity sense. The F30/E30 PCB does not have the diodes. Further, the A50 board has a 12-pin connector while the F30/E30 board has an 11-pin connector — perhaps to avoid assembly mistakes.

Yamaha Reface key switch matrix schematic

Is velocity sense worth the extra bucks? There may be other differences, too, but these differences are plainly visible.

And the usual caution/disclaimer — kiss the warranty good-bye! For the money, the PSS should be good mod-fodder. Korg probably sold a mess o’monotron that way. 

Copyright © 2021 Paul J. Drongowski

Free DJX-II styles: Version 2

I’m happy to announce version 2 of my DJX-II styles for Yamaha Genos, Tyros and PSR arrangers.

These DJ styles are converted from the original Yamaha DJX-II patterns. If you would like to know more about the conversion process, please see: Mining the Yamaha DJX-II.

These are DJ styles, so they only respond to changes in the root note. The chord progressions are cooked into the patterns (just like intros and endings in regular PSR styles). I tried to find the best mapping from DJX-II patterns to style sections. Therefore, some of the DJXII styles have auto-fill, some do not. Longer “fill” patterns are assigned to the intro and ending sections which can play more than one measure.

Feel free to edit, rearrange and customize the styles in order to make them your own. I recommend Jørgen Sørensen’s excellent tools. Jørgen’s site also has documentation and tutorials about styles and style creation to help you along. Please check it out and support his work!

Click on this link to download the ZIP file.

Version 2 includes all of the files in the first collection. Version 2 adds Drum ‘n’ Bass, Disco, House and Trip Hop styles. The ZIP file includes a README.TXT file which should help you get started with the styles. I have also included PDF notation files for people who read music and want to know about the chord progressions, bass lines, and so forth.

Enjoy! The DJX-II style collection is free.

Copyright © 2021 Paul J. Drongowski