Genos teaser video three

Yamaha Genos™ teaser video number three: Alex Christensen & The Berlin Orchestra – Infinity

Treat yourself to the video first before reading. There is a spoiler ahead!

Another track with orchestra and the occasional driving four on the floor. The video follows up with the visual and musical themes established in the second teaser video.

Very good production values, of course!

The first commenter was kind enough to leave bookmarks for the Genos:

Was anything missed? Be sure to go over this video frame by frame. 🙂

The first snippet is the Style Control section. If you’re a Yamaha Tyros or PSR S-series player, no surprises here. We see the now well-known sliders and “cooling tower” knobs for real-time control. Was the finger hitting the MAIN D section button an important hit point in the music? Didn’t seem that way to me. [Please click images to enlarge.]

The big pan. This will be dissected in so many ways over the next week until the fourth teaser video drops. We do see Voice and Part selection buttons, One Touch Setting (OTS) buttons, Multi Pad Control buttons, six assignable buttons (A-F), six lighted navigation buttons, data wheel, INC, DEC and EXIT buttons — all to the right of a rather nice looking wide-screen touch panel. Can’t really tell if the panel tilts. The USB port for your jump drive also makes an appearance.

The lighted navigation buttons were a bit of a surprise. Leaked images did not show the button legends. I can just make out HOME, STYLE and VOICE in the teaser video. My guess is that these buttons are an alternative, fast way into the menu structure — very important for visually impaired musicians. I’ll let younger eyes or those with CIA image enhancement software make out the other legends (MENU? PLAY LIST? SET?)

The big pan got one enormous belly laugh: “USB device is disconnected.” The display shows a style selection page and what’s that? A pop-up alert box! All this money on a video and they disconnect the jump drive?

Five tabbed pages of Dance styles. About fifty dance styles? The exact number is not really significant at this stage.

What’s up with the saxophone? I hear horns. That better be Cubase!

The third video deepens the mystery created in the second teaser video. What is the exact relationship between the sounds that we hear and the Yamaha Genos digital workstation? There are quite a few repetitious musical phrases (ostinato). Did the Genos produce those sounds or were those sounds sampled as the basis for new audio styles which combine with MIDI? The same question could be asked about the melody lines. Are we hearing the Genos or were the musicians and their instruments sampled and turned into Genos voices? Stay tuned. (No pun intended.) The answer to all of these questions may be “Yes.”

That’s it for this week except for unbridled speculation. The Genos will be shown in New York City to select Yamaha dealers on September 22nd. Martin Harris will be one of the demonstrators. The fourth teaser video will be released on September 29th. Genos will finally (finally!) be announced on October 2nd.

Oh, that unverified image? It’s probably the real deal.

Update

At 02:23, we catch a glimpse of the Yamaha Genos™ in the lower right hand corner of the frame.

My European and sleepless North American colleagues on the PSR Tutorial Forum have worked out the six assignable button legends: HOME, MENU, STYLE, VOICE, SONG, and PLAYLIST. Someone should get a free Genos from Yamaha for working this out!

Copyright © 2017 Paul J. Drongowski

GENOS unverified image

The following unverified image has appeared on the Web. It seems to have been taken at a presentation.

Physical features are similar to other leaked images of GENOS™ and the teaser videos (one and two). The keyboard in this unverified image very much looks like a prototype — or at best, pre-production — model. Remember, sound developers need functional mock-ups for their work and even dealer demo units will not be available until October.

A huge warning. We are now in a phase when images and “specifications” are ricochetting around the Web. The Internet echo chamber is ringing like a bell! Plus, we have a number of individuals who are desperate and are trying to draw attention to their sites (advertising revenue, ca-ching) and Youtube videos (ca-ching). This site is independent and I do not receive money from advertising.

Beware while awaiting Yamaha’s official announcement on October 2nd! We still have two more teaser videos to survive on September 22nd and 29th.

Mega Voice in PSR/Tyros styles

Yes, this site still answers questions and doesn’t just publish rumors and FUD. 🙂

Recently, a member of the PSR Tutorial Forum needed help using a Megavoice in a custom Tyros style. My answer seemed to be useful to a broader audience, so I decided to post my answer here. The information applies to PSR arrangers, too, because the Tyros and PSR share the same SFF1 and SFF2 (SFF GE) style formats.

Megavoice guitars are very different than regular guitar voices.

Regular voices are the usual MIDI voice: 128 velocity levels and only one basic sound. For example, nylon guitar is just the pitched, melodic sound of the notes either louder or softer depending on note velocity.

Megavoice guitars (and other Megavoices) are different. Please look at the Megavoice Map starting on page 16 of the Tyros Data List PDF.

Let’s take a look at the Mega NylonGuitar voice. For MIDI notes B5 and below, the MIDI velocity is broken into eight (8) ranges:

    1- 20 Open soft
   21- 40 Open med
   41- 60 Open hard
   61- 75 Dead
   76- 90 Mute
   91-105 Hammer
  106-120 Slide
  121-127 Harmonics

Each range plays a different kind of sound. So, the MIDI velocity determines which guitar sound. Then, the velocity within that limited range determines how loud it will be.

Example 1: MIDI note A4, velocity 38 makes an Open Med guitar sound which is loud.

Example 2: MIDI note A4, velocity 2 makes an Open Med guitar sound which is quiet.

Example 3: MIDI note A4, velocity 110, makes a Slide guitar sound.

Now, let’s look at the last two columns in the Megavoice map, again, Mega NylonGuitar voice. For MIDI notes between C6 and B7, the Tyros plays a Strum noise. The velocity in this case determines the Strum noise loudness over the full range 1-127.

For MIDI notes above C8, the Tyros plays a Fret noise. The velocity determines the fret noise volume and is full range 1-127.

Example 4: MIDI note D8, velocity 127 plays a very loud fret noise.

The Megavoice mapping makes it more difficult to program (sequence) guitar parts than regular voices. The user needs to make sure that the MIDI note is in the desired range (B5 and under, above C6, etc.) and that the MIDI velocity controls what you want.

Yamaha’s proprietary CASM has a few settings to control Mega Voices. The bad news — you can’t change some of these settings.

When I program Megavoice into a style, I use two parts for each Megavoice:

    Part 1: Pitched notes -- all note B5 and below
            NTR: ROOT TRANS or GUITAR
            NTT: MELODY or CHORD
    Part 2: Noise notes -- all notes above C6
            NTR: ROOT FIXED
            NTT: BYPASS

You want the pitched notes to transpose. You don’t want the noise notes to transpose. (Please think of the noise notes like drum notes/sounds.)

I wrote a three part series of articles about capturing Motif/MOX arpeggios and converting them to PSR/Tyros styles:

If you don’t care about Motif/MOX, then skip part one. Parts two and three are more generally useful and describe the conversion of a MIDI file to a style. Part three concentrates on Megavoice conversion.

Copyright © 2017 Paul J. Drongowski

This is the place(ment)

Alex Christensen & the Berlin Orchestra, Classical remake of “Snap! Rhythm Is a Dancer.”

Now that’s what a big production budget and product placement will buy you!

Wot? It’s not an ad for Yamaha headphones?

This is the second teaser video for the new Yamaha GENOS™ Digital Workstation.

I found three video clips showing the GENOS. If you found more, congratulations! You have less of a life than I do. 🙂 [Please click images to enlarge.]

At least we know where the “Direct Access” button is.

A nice, clean, flat user interface. Too bad recent research shows that users navigate a flat interface 22% slower than an interface with shadows, etc.

Yep, looks like the knobs adjust parameters and the display shows the current value.

The second video does not reveal much more than the first “pixie dust” teaser video. However, you can rest assured that Yamaha means and sanctions these video snippets. Yes, it has sliders, knobs, a color touch panel, and a parameter display above the knobs.

The main editorial question, however, is what role did the Yamaha GENOS™ play in the actual musical production of Mr. Christensen’s album? Or, vice versa?

Back to the crass business of marketing, Yamaha clearly want to reach a younger customer base without offending the old folks. (I am an old folk, by the way.) That’s perfectly fine by me as the Yamaha innovation engine needs fuel from many sources. If indeed the GENOS has styles combining MIDI and audio phrases, the development cost of that content alone must be staggering. (Do not think GENOS will come cheaply.)

We await more. Always more.

Related posts:

Original material Copyright © 2017 Paul J. Drongowski

A hoax image?

An unverified image of the Genos™ surfaced on the Web overnight. I will not publish this image here until I’m sure of its veracity.

If this image is genuine, it confirms features seen in the teaser video. Although the image depicts familiar PSR/Tyros features (e.g., style/section control buttons, registration buttons, One Touch Setting buttons, and multi-pad buttons), it has many new features over the current Tyros:

  • Color touch panel
  • Six control knobs
  • Display above the knobs (showing parameters?)
  • Nine drawbars
  • Six assignable buttons

The Tyros voice select buttons (far right just above the keyboard) indicate RIGHT1, RIGHT2, RIGHT3 and LEFT voices — typical for Tyros. A USB host port is above and to right of the voice select section. That’s a lot of unused real estate between the six assignable buttons and the USB bay by the way.

Current PSR/Tyros models provide a matrix of style selection buttons and a matrix of voice selection buttons. The image does not show these button groups. This would imply that all voice and style selection is made through the touch panel.

The Montage user interface supports user actions through both the touch panel and physical front panel buttons. This “duality” accommodates musicians with certain perceptual disabilities; Yamaha were lauded for this accommodation. Judging from this image, the Genos would not support this kind of “duality.”

The lower left corner of the keyboard does not appear to have pitch bend or modulation wheels. It looks more like a joystick.

The keyboard has 76 keys. Given the layout of the panel buttons, the space used by the panel buttons, etc. would preclude a 61-key version. This would be a break with current Tyros and Montage product lines that always provide a 61-key model.

Well, folks, there’s the image. A well done hoax? I’d like to believe, but I strongly recommend waiting for Yamaha’s verification on this one. We’ll know for sure, soon. Three more teaser videos are due over the next few weeks.

Copyright © 2017 Paul J. Drongowski

Genos is coming soon

Well, it’s official. Yamaha have created a special web site for Genos™ related announcements. The first posting is the teaser video which was accidentally released over the weekend. New videos will appear on September 15, 22 and 29. Dealer previews are scheduled during the last two weeks of September. Of course, we’re all dying to see the manuals and the data list PDF!

There’s one key graphic in the Yamaha annual report with the goal: Develop Products with Distinctive Individuality: Add original value to excellent basic functions and develop products others cannot imitate.

That’s a direct quote.

So, please review my summaries of recent Yamaha patents:

This is Yamaha staking out its claim in synth and arranger technology. Patents are expensive and Yamaha do not seek patent protection frivolously.

Hey, hey, serious stuff, but exciting!

Yamaha have filed several patents on styles and style playback using both MIDI data and digital audio. Not just audio drums, but pitched, melodic instrument parts.

When you hear a cello in the demo, that may very well be a recording of a real human being playing a real cello.

The playback engine tracks left hand chords. With respect to audio parts, the engine selects the most appropriate audio phrase from its library of audio recordings according to chord type. Time-stretching (etc.) adjusts for tempo and pitch-shifting adjusts for transposition. Thus, the recorded audio phrase is pitch- and tempo-matched against the musical clock and MIDI. Sounds easy, but try to do it right and do it in real-time!

I’m making a leap from patent filings to product, but my gut feeling as an engineer is strong about this one. (Feel the force, Luke.)

Or, we’ll all have a good laugh.

Copyright © 2017 Paul J. Drongowski

Flash dance?

So, is someone having a good laugh at us or is someone in trouble for accidentally releasing the Yamaha Genos teaser video? Or, is this a planned flash dance to get the fan base stirred up?

Debate is already raging on the PSR Tutorial Forum about the authenticity of the video. If it’s a fake, then hat’s are off to someone with brilliant production skills.

If you’ve seen the video, the instrument is not shown definitely. Rather, two hands conjure pixie dust into a stylized, 3-Dish instrument. There are one or two brief flashes of the rear view. (Not meaning to be crude, here.) The hands are disconnected from any meaningful musical gestures except for one deliberate gesture at roughly 46 seconds. A hand moves a slider in sync with an sforzando sweep in the soundtrack. Shades of Montage’s “Music in Motion” theme.

Observations include: six knobs, nine sliders, ten registration buttons, (probable) touch screen. Yamaha seem to have cornered the market on red and blue LED given this video and the Montage! Special thanks to Marcus, Maarten and Vinciane on the PSR Tutorial Forum for their keen eyes and steady disposition.

Here are a few captures from the unverified teaser video for the new Yamaha Genos arranger workstation. First up, the Genos logo. [Click on images for higher resolution.]

Next, is a close view of the knobs and faders. Mid-range PSR and Tyros models have a drawbar mode. Perhaps Yamaha have now given the drawbars proper faders? If true, Genos could be a terrific stage gig machine for the non-EDM types who crave quality acoustic piano, electric piano and B-3 organ. A shame that Montage didn’t fully nail drawbar control.

Finally, not so delicately put, is the rear view, presumably with all of the usual connectors provided for.

We’ll know for sure, soon. Dealer preview dates are September 18 (Europe) and September 28 (North America).

If you’re curious about what a new Yamaha arranger might do, then please read my blog posts about recent Yamaha R&D patents:

Copyright © 2017 Paul J. Drongowski

Montage tidbits

Martin Harris. Now, there’s a person who loves his job!

Even though the camera work is a little shaky, I recommend the Montage demonstration by Martin Harris of Yamaha.

Martin’s demo concentrates on acoustic and electric pianos, section and solo strings, brass, Irish whistle and pads — all from a cinematic perspective. Not much EDM here.

I like Martin’s demonstrations because he adds information about sample and voice development. Even though he calls it a “whistle stop tour,” it’s more like a tour of the world. Yamaha have traveled the world to sample the best instruments and players. Here are a few examples as mentioned by Martin:

  • Section and solo strings: Seattle
  • Brass: Los Angeles (L.A. horns)
  • Classical men’s choir: Germany
  • Classical boy’s choir: Estonia
  • Flamenco guitar: Madrid
  • Brazilian percussion: Sao Paulo
  • Turkish percussion: Istanbul
  • Iranian percussion: Tehran
  • Middle Eastern percussion: Bahrain
  • Irish whistle: Ireland

Before people complain about the cost of a top-of-the-line keyboard like the Montage or Tyros, they really should take the cost and time of sampling and voice development into account!

The Montage CFX grand piano is all new sampling. Martin stated the compressed total waveform size as 300 Mbytes, approaching 1 GBytes uncompressed. At demo time (April 2016), the Montage CFX was the biggest sampled piano in the Yamaha line. The Rhodes and Wurlitzer electric pianos are also new sampling.

Guitars also got an update. Martin and Gibson steel guitars were sampled. The sampled Telecaster is a $60,000, 1957 vintage Tele. Martin mention how, in the past, Yamaha removed the dirt from samples. Today they leave in some of the idiosynracies, charm and character.

If you enjoyed Martin’s demo, here are a few blog posts to check out. Last April, I made a list of new waveforms in the Montage vs. the Motif XF. I also wrote a thought piece about waveform memory size and sample development.

New sound development, including sampling, is a continual, on-going process at Yamaha. In an era when waveform memory is relatively big and inexpensive, sound developers need to work overtime in order to fill available memory space. I think the limiting factor now is the amount of time and human resources available to produce new samples and to program new expressive voices.

Copyright © 2017 Paul J. Drongowski

Yamaha CSP pianos: First take

Yamaha just announced the Clavinova CSP series of digital pianos. There are two models: CSP-150 and CSP-170. The main differences between the 170 and 150 are keyboard action (NWX and GH3X, respectively) and sound system (2 x 45W and 2 x 30W, respectively). USA MSRP list prices are $5,399 to $5,999, and $3,999 to $4,599 USD.

These are not stage pianos. They are “furniture” pianos which complement and fit below the existing CLP line.

Here’s my imagined notion of the product pitch meeting:

Digital piano meets arranger meets Rock Band. Let’s say that you don’t have much (any) musical training, but you want to play along with Katy Perry. Sit down at the CSP with your smart device, install the Smart Pianist app and connect via Bluetooth. Call up “Roar” in the app and get a simple musical score. Start the song, follow the LEDs above the keys and play along with the audio. The app stays in sync with the audio and highlights the notes to be played on each beat. So, if you learned a little bit about reading music, you’re good to go.

Sorry, a little bit more than an elevator pitch, but this is first draft writing! 🙂

That is CSP in a nutshell. The CSP is a first-rate piano and it has a decent collection of non-piano voices and arranger styles. The CSP even includes the Hammond-ish “organ flutes” drawbar organ voices. So, if you want to jam out with electric guitar, you’re set. If you want to play chords with your left hand and freestyle it, the CSP is ready.

If you’re looking for a full arranger workstation, though, you’re missing some features. No pitch bend wheel, no mod wheel, no multipads, no accompaniment section (MAIN, FILL, …) buttons. No voice editing; all voices are preset.

And hey, there’s no display either! The Smart Pianist app is your gateway to the CSP feature set. You can select from a few voices and styles using the FUNCTION button and the piano keyboard, but you need the app to make full use of the CSP. Eliminating the CLP’s touch panel, lights and switches takes a lot of cost out of the product, achieving a more affordable price point.

I could see the CSP appealing to churches as well as home players given the quality of the piano and acoustic voices. Flipping the ON switch and playing piano is just what a lot of liturgical music ministers want. The more tech savvy will dig in. Pastors will appreciate the lower price of the CSP line.

From the perspective of an arranger guy, the CSP represents a shift away from the standard arranger. For decades, people want to play with their favorite pop tunes. In order to use a conventional arranger (no matter what brand), the musician must find a suitable style and the musician must have the musical skill to play a chord with the left hand, even if it’s just the root note of the chord. Often the accompaniment doesn’t really “sound like the record” and the player feels disappointed, unskilled and depressed. Shucks, I feel this way whenever I make another attempt at playing guitar and at least I can read music!

The CSP is a new paradigm that addresses these concerns. First, the (budding) musician plays with the actual recording. Next, the app generates a simplified musical score — no need to chase after sheet music. The score matches the actual audio and the app leads the player through the score in sync with the audio. Finally, the CSP’s guide lights make a game of playing the notes in the simplified score.

We’ve already seen apps from Yamaha with some of these features. Chord Tracker analyzes a song from your audio music library and generates a chord chart. Kittar breaks a song down into musical phrases that can be repeated, transposed and slowed down for practice. The Smart Pianist app includes Chord Tracker functionality and takes it to another level producing a two stave piano score.

Notice that I said “a score” not “the score.” Yamaha’s audio analysis only needs to be good enough to produce a simple left hand part and the melody. It does not need to generate the full score for a piece of music. Plus, there are likely to be legal copyright issues with the generation of a full score. (A derivative work?)

Still, this is an impressive technical feat and is the culmination of years of research in music analysis. Yamaha have invested heavily in music analysis and hold many patents. Here are a few examples:

  • U.S. Patent 9,378,719: Technique for analyzing rhythm structure of music audio data, June 28, 2016
  • Patent 9,117,432: Apparatus and method for detecting chords, August 25, 2015
  • U.S. Patent 9,053,696: Searching for a tone data set based on a degree of similarity to a rhythm pattern, June 9, 2015
  • U.S. Patent 9,006,551: Musical performance-related information output device, April 14, 2015
  • Patent 9,275,616: Associating musical score image data and logical musical score data, March 1, 2016
  • U.S. Patent 9,142,203: Music data generation based on text-format chord chart, September 22, 2015

The last patent is not music analysis per se. It may be one of several patents covering technology that we will see in the next Yamaha top of the line (TOTL) arranger workstation.

I think we will be seeing more features based on music analysis. Yamaha’s stated mission is to make products that delight customers and to provide features that are not easily copied by competitors. Yamaha have staked out a strong patent position in this area let alone climbing over the steep technological barrier posed by musical analysis of audio.

Copyright © 2017 Paul J. Drongowski

Real Acoustic Sound

As mentioned in my earlier post, the Yamaha NSX-1 integrated circuit implements three sound sources: a General MIDI engine based on the XG voice architecture, eVocaloid and Real Acoustic Sound (RAS). RAS is based on Articulation Element Modeling (AEM) and I now believe that eVocaloid is also a form of AEM. eVocaloid uses AEM to join or “blend” phonemes. The more well-known “conventional” Vocaloid uses computationally intensive mathematics for blending which is why conventional Vocaloid remains a computer-only application.

Vocaloid uses a method called Frequency-domain Singing Articulation Splicing and Shaping. It performs frequency domain smoothing. (That’s the short story.)

AEM underlies Tyros Super Articulation 2 (S.Art2) voices. Players really dig S.Art2 voices because they are so intuitively expressive and authentic. Synthesizer folk hoped that Montage would implement S.Art2 voices — a hope not yet realized.

Conceptually, S.Art2 has two major subsystems: a controller and a synthesis engine. The controller (which is really software running on an embedded microcomputer) senses the playing gesture made by the musician and translates those gestures into synthesis actions. Gestures include striking a key, releasing a key, pressing an articulation button, moving the pitch bend or modulation wheel. Vibrato is the most commonly applied modulation type. The controller takes all of this input and figures out the musician’s intent. The controller then translates that intent into commands which it sends to the synthesis engine.

AEM breaks synthesis into five phases: head, body, joint, tail and shot. The head phase is what we usually call “attack.” The body phase forms the main part of a tone. The tail phase is what we usually call “release.” The joint phase connects two bodies, replacing the head phase leading into the second body. A shot is short waveform like a detached staccato note or a percussive hit. A flowing legato string passage sounds much different than pizzicato, so it makes sense to treat shots separately.

Heads, bodies and tails are stored in a database of waveform fragments (i.e., samples). Based on gestures — or MIDI data in the case of the NSX-1 — the controller selects fragments from the database. It then modifies and joins the fragments according to the intent to produce the final digital audio waveform. For example, the synthesis engine computes joint fragments to blend two legato notes. The synthesis engine may also apply vibrato across the entire waveform (including the computed joint) if requested.

Whew! Now let’s apply these concepts to the human voice. eVocaloid is driven by a stream of phonemes. The phonemes are represented as an ASCII string of phonetic symbols. The eVocaloid controller recognizes each phoneme and breaks it down into head, body and tail fragments. It figures out when to play these fragments and when bodies must be joined. The eVocaloid controller issues internal commands to the synthesis engine to make the vocal intent happen. As in the case of musical passages, vibrato and pitch bend may be requested and are applied. The NSX-1 MIDI implementation has three Non-Registered Parameter Number (NRPN) messages to control vibrato characteristics:

  • Vibrato Type
  • Vibrato Rate
  • Vibrato Delay

I suspect that a phoneme like “ka” must be two fragments: an attack fragment “k” and a body fragment “a”. If “ka” is followed immediately by another phoneme, then the controller requests a joint. Otherwise, “ka” is regarded as the end of a detached word (or phrase) and the appropriate tail fragment is synthesized.

Whether it’s music or voice, timing is critical. MIDI note on and note off events cue the controller as to when to begin synthesis and when to end synthesis. The relationship between two notes is also critical as two overlapping notes indicate legato intent and articulation. The Yamaha AEM patents devote a lot of space to timing and to mitigation of latency effects. The NSX-1 MIDI implementation has two NRPN messages to control timing:

  • Portamento Timing
  • Phoneme Unit Connect Type

The Phoneme Unit Connect Type has three settings: fixed 50 msec mode, minimum mode and velocity mode in which the velocity value changes the phoneme’s duration.

As I mentioned earlier, eVocaloid operates on a stream of phonetic symbols. Software sends phonetic symbols to the NSX-1 using either of two methods:

  1. System Exclusive (SysEx) messages
  2. NRPN messages

A complete string of phonetic symbols can be sent in a single SysEx message. Up to 128 phonetic symbols may be sent in the message. The size of the internal buffer for symbols is not stated, but I suspect that it’s 128 symbols. The phoneme delimiter is ASCII space and the syllable delimiter is ASCII comma. A NULL character must appear at the end of the list.

The NRPN method uses three NRPN message types:

  • Start of Phonetic Symbols
  • Phonetic Symbol
  • End of Phonetic Symbols

In order to send a string of phonetic symbols, software sends a start NRPN message, one or more phonetic symbol NRPN messages and, finally, an end of phonetic symbols NRPN message.

Phonetic symbols are stored in a (128 byte?) buffer. The buffer lets software send a phrase before it is played (sung) by the NSX-1. Each MIDI note ON message advances a pointer through the buffer selecting the next phoneme to be sung. The SEEK NRPN message lets software jump around inside the buffer. If software wants to start at the beginning of the buffer, it sends a “SEEK 0” NRPN message. This capability is really handy, potentially letting a musician start at the beginning of a phrase again if they have lost their place in the lyrics.

When I translated the Yamaha NSX-1 brochure, I encountered the statement: “eVocaloid and Real Acoustic Sound cannot be used at the same time. You need to choose which one to pre-install at the ordering stage.”. This recommendation is not surprising. Both RAS and eVocaloid must have its own unique database; RAS has instrument samples and eVocaloid has human vocal samples. I don’t think, therefore, that Pocket Miku has any RAS (AEM) musical instrument samples. (Bummer.)

Speaking of databases, conventional Vocaloid databases are quite large: hundreds of megabytes. eVocaloid is intended for embedded applications and eVocaloid databases are much smaller. I’ll find out how big once I take apart Pocket Miku. Sorry, Miku. 🙂

I hope this article has given you more insight into Yamaha Real Acoustic Sound and eVocaloid.

Copyright © 2017 Paul J. Drongowski