PSR-S770 and S970 internal architecture

Yamaha just recently introduced the new PSR-S770 and PSR-S970 arranger workstations. As usual, I’m always anxious to dive into the service manual and see what’s up.

First, I’d like to thank Uli and capriz68 on the PSR Tutorial Forum for their help. Uli made a very nice table from my ramblings, so be sure to check it out there.

Without further introduction, here is a table comparing previous generation models (PSR-S750 and PSR-S950) against the new models.

                    PSR-S750  PSR-S950   PSR-S770  PSR-S970
                    --------  ---------  --------  ---------
Main CPU            SWX08     SH7731     SH7731    SH7731
Clock rate (MHz)    135.4752  256        320       320
Tone generator      SWP51L    SWP51L     SWP70     SWP70
Ext clock (MHz)     11.2896   11.2896    22.5792   22.5792
DSP SDRAM (MBytes)  8         8          8         8
DSP RCLK (MHz)      45.1584   45.1584    95.9616   95.9616
Mic ADC                       AK5381     PCM1803   AK5357
AUX IN ADC          AK5357    AK5381     AK5357    AK5381
DAC                 AK4396    AK4396     AK4396    AK4396
Digital amp         YDA164C   2*YDA164C  YDA164C   2*YDA164C
Wave ROM (MBytes)   256       256        512       2048
Wave SDRAM          N/A       N/A        32MBytes  32MBytes
SSP2 chip           No        Yes        No        No

The main CPU remains a Renasas SH4AL-DSP CPU. The clock speed is increased from 256MHz to the 320MHz, which is just shy of the rated maximum for the SH7731.

Wave memory is increased from 256MBytes (S950) to 512MBytes (S770) and 2GBytes (S970). Part of the S770 and S970 wave memory is reserved for expansion pack voices: 160 MBytes (S770) and 512 MBytes (S950). How Yamaha uses the rest of the memory is up to Yamaha. However, we are now in an era when we cannot compare products solely on the basis of physical wave memory size. Our ears and performance experience are more important than mere byte counts!

The S970 has two NAND flash memory devices labelled “audio style.” The devices are:

    4Gbit NAND flash = 512MBytes
    2GBit NAND flash = 256MBytes
    Total audio style  768MBytes

Yamaha specifies memory size in bits, so one must be careful to convert during analysis. The PSR-S950 has a NAND flash device labelled “Program ROM,” which presumably served the same purpose as well as holding the operating system image that is loaded at boot time. The S950 device capacity is 512MBytes (4Gbits). The S970 reserves 128MBytes for audio style expansion.

The upper mid-range model, i.e., the S970, is biamplified with two digital power amps. The older S950 is also biamplified. Not much change here.

The big news is that Yamaha have a new tone generator integrated circuit (IC), the SWP70. The SWP70 uses the serialized wave memory interface that I described in an earlier post. The SWP70 appears to operate at twice the speed of the older SWP51L. The SWP70 has implications for other future products, so I will analyze it in a separate post.

With respect to the PSR-S970, however, there is another evolutionary step. With the appearance of the new SWP70, there is also the disappearance of the SSP2 IC. The introduction of the SSP2 IC coincided with the introduction of Vocal Harmony 2 in both the Tyros line and the PSR-S950. It is reasonable to infer, then, that vocal harmony is implemented on board SSP2. With the PSR-S970, there are two possibilites.

  1. Vocal harmony is assigned to the now faster main CPU, or
  2. SSP2 functionality is integrated into the new SWP70.

The SWP70 is beefed up in other ways including a new wave working memory.

The future looks interesting as always!

Here are links to my articles on other members of the PSR and Tyros product families:
What’s inside of a Yamaha arranger?
A follow-up on the Yamaha SWP51
Yamaha arranger product family

All site content is Copyright © Paul J. Drongowski unless otherwise noted.