Won’t be long, yeah!

Winter NAMM 2017 starts in two weeks (January 19). As usual, we gear freaks can’t wait to get our annual new product fix!

Roland jumped the field and announced a few new products at the 2017 Consumer Electronics Show (CES). They appear to be rolling out a new consumer-oriented product line, “GO:”, for amateur musicians and music makers.

Roland announced two new keyboards for beginning players: the GO:KEYS (G-61K and G-61KL) and the GO:PIANO. Both products target the entry-level market currently dominated by Yamaha and Casio. This is a smart business move as the entry-level segment moves a lot of units and offerings in this segment have been getting stale. Here are estimated USA sales statistics for 2014 in the “portable keyboard” segments:

    Category                       Units            Retail value
    -----------------------------  ---------------  -------------
    Portable keyboards under $199    656,000 units  $ 64,000,000
    Portable keyboards over $199     350,000 units  $123,000,000
    Total portable keyboards       1,006,000 units  $187,000,000

    (Source: NAMM)

Unit volume is high, but price and margins are razor thin. Keyboards in the “under $199” category are sold mainly in big box stores, not musical instrument retailers. So, it will be interesting to see where the new Roland keyboards are sold.

The GO:KEYS is most similar to an entry-level arranger keyboard. Estimated street price is $299. Roland is selling two models: a model with Bluetooth support and a model without. Probably depends on their ability to get RF type acceptance in a country or region. The GO:KEYS claims General MIDI 2 (GM2) support among 500 “pro-quality” sounds. The GM2 tone set consists of 256 melodic instruments and nine drum kits. I produced quite a few decent backing tracks using the Roland GM2 sound set on its RD-300GX stage piano. If Roland adopted this set, then the GO:KEYS should sound pretty decent (at least through external monitors rather than its internal speakers). No manual yet so it’s hard to say specifically what other sounds are included. Even if they recycled some chestnuts from the old JV/XP/XV, there is hope.

roland-go_keys

The Roland GO:PIANO is, ta-da, a portable piano. This product has the Yamaha Piaggero line in its cross-hairs. The estimated street price is $329. Again, no manual, so it’s hard to assess the feature set. Pricing on both products places them at the higher end of the entry-level market. The inclusion of Bluetooth support at this price point is a significant differentiator.

roland_go_piano

Both the GO:KEYS and GO:PIANO are battery powered (six AA batteries) in addition to an AC adapter. Both products use one-off fixed field LCD text and graphics like the lower cost Yamaha and Casio models. The key beds look decent, but we will have to play them in order to assess feel and quality. At least the keys are full size — not mini-keys, thank you.

If the Roland sounds are indeed up to snuff, Roland may be able to take sales away from Yamaha and Casio. Yamaha has been coasting with its entry-level sound set for over a decade and the recent PSR-E453 refresh did little to rejuvenate the entry-level segment. It will be interesting to see if Roland can win sales and spur innovation at the low end.

The GO:MIXER is positioned as an audio mixer for your mobile phone. It is USB powered, however, with no battery option. The GO:MIXER has guitar, microphone, instrument and media player inputs with associated mixing level control. There is a stereo monitor output as well as a “center cancel” feature. The estimated street price is $99USD.

roland_gomixer

Although Roland promote it for video production, I could see musicians using the GO:MIXER for a quick mix in the field. It certainly has enough inputs that a small group of pals could plug in and jam away.

FreePlay style deconstructed

Yamaha FreePlay styles for PSR and Tyros are terrific for music without rhythm instruments and strong rubato (variation in tempo to achieve a musical or emotional effect).

I’m customizing a few FreePlay styles with the intention of using them for liturgical music. In the first pass, I’m changing the OTS voice settings and I’m making a registration that calls up my go-to voices for traditional and contemporary church music.

Of course, my curiosity took over and I had to take a look inside of a FreePlay style or two using a DAW and Michael B’s StyleDump program. I have attached a text file with my working notes. The notes may be too much detail for most readers, so here is a quick summary of what I found. I’ve looked at only two styles so far: EtherealHymn (taken from the CVP-609) and OrganPlay1 (taken from the Church Organ expansion pack).

First off, how does it sound and feel to play a FreePlay style? The accompaniment is triggered and guided by the left hand as usual. (I haven’t tried FreePlay with AI fingering, etc. yet.) The accompaniment plays a gentle pad-like chord and a simple bass. The simplicity provides a blank canvas on which you can embellish to your heart’s content.

You might guess that the MAIN and FILL IN sections are quite simple and you would be right. The MAIN sections in the OrganPlay1 and EtherealHymn styles hold notes for 8 and 32 measures, respectively. The chord source in each case is CMaj7. The BASS track holds a single note (e.g., C2) through the entire section. The chord or pad tracks hold the rest of the notes that make up the CMaj7 chord: E, G and B. Harmony-wise, that’s it!

The FILL IN sections are similar and hold notes for just one measure because FILL IN sections are only one MIDI bar long.

Without a rhythm track, those looooooooong notes have a timeless quality. A musician would rarily — if ever — hold a chord that long. Thus, MAIN sections typically do not re-trigger.

Yamaha’s genuine contribution lies in the INTRO/ENDING sections and the fun MIDI stuff that happens during the MAIN sections. The INTRO and ENDING sections have more “orchestration” and consist of style appropriate introductory and ending phrases. For my own purposes, I will probably stick to the simple INTRO A and ENDING A sections as it’s generally hard to match up more complicated musical phrases with the main theme itself.

The “MIDI stuff” must have been fun to program. The EtherealHymn style has string and choir tracks. The string track has MIDI expression data (Control Change 11 or “CC11”) that repeatedly ramps up for two measures and down for two measures. The ramp pattern creates alternating string swells up and swells down. Other control change patterns are rather unusual and I’ll leave that for you to explore with a DAW! (All you need to do is to change the “.STY” or “.FPS” extension to “.MID” and import the renamed file into a DAW.)

One could create a basic FreePlay style from scratch. The MIDI notes in the MAIN and FILL IN sections are dirt simple. The fun part would be selecting instrument voices and effects with dynamic elements that give life to the accompaniment. Then there is the creative aspect of driving the voices and effects with MIDI controller data. For INTRO and ENDING sections, a little Bach or Mozart would do.

Hmmm, sounds like a fun wintertime project!

The long view

Here’s some information attributed to Martin Harris from Yamaha. Martin is one of the key sound developers at Yamaha:

  • Better Pianos
  • New Strings – 70 piece Seattle Symphony Orchestra Mega
  • New Orchestral Brass – highly dynamic
  • New Tuned Percussion – Glock, Xylo, Marimba and Vibes (with motor on)
  • New Mega guitars – Telecaster with Finger and Plectrum
  • SA2 Celtic Violin
  • New Synth Voices
  • New Classical Choir – Cathedral ambience
  • New Gospel Choir – Various articulations and Ad libs
  • New Pop Vocals – 4 session singers, 2 male and 2 female
  • Singing many dynamics and many articulations (wave cycling)

Montage? No, Tyros 4. The “SA2” should be a clue as the Montage does not provide Super Articulation 2 (SA2) voices.

My purpose here is not to be tricky, but to make the case that sample-based workstations or synthesizers draw from the sound pool that is available at development time, much the same way that hardware designers draw on the pool of available components. Products cannot be composed of imaginary circuits (“sand”), software, and sounds, after all.

To better illustrate this point, here is a rough timeline for the Tyros and Motif product lines with a few mid-range products (S9xx and MOX) thrown in:

             Tyros                        Motif/Montage
----   ------------------  ------------------------------------------
Year   Model     Physical  Model     Physical  Uncompressed waveforms
----   ------------------  ------------------------------------------
2001                       Motif      48MB     84MB 1,309 waveforms
2002   Tyros      96MB
2003                       Motif ES   96MB     175MB 1,859 waveforms
2004
2005   Tyros 2   192MB
2006
2007                       Motif XS  128MB     355MB 2,670 waveforms
2008   Tyros 3   256MB
2009
2010   Tyros 4   512MB     Motif XF  256MB     741MB 3,977 waveforms
2011                       MOX       128MB     355MB 2,670 waveforms
2012   PSR-S950  256MB
2013   Tyros 5   768MB     MOXF      256MB     741MB 3,977 waveforms
2014
2015   PSR-S970    2GB
2016                       Montage     4GB     5.67GB 6,347 waveforms

I included physical wave memory size for each product. I also included the uncompressed total sample size and number of waveforms for each member of the Motif/Montage line.

Clearly, Yamaha know how to ride the memory technology curve. Memory technology has progressed to the point where it is no longer a significant hardware design factor. Rather, the amount of wave memory in a product depends more upon the ability of the sound designers to fill it with quality content and mid- versus premium-product grading (i.e., the target market segment and price point for the model). For example, note that the mid-range S970 has more than twice the physical wave memory than the Tyros 5. Although the “expansion memory” is reserved in the S970’s physical wave memory, the S970 waveform content is substantially smaller than the Tyros 5.

The other characteristic to note is how the Tyros and Motif lines tend to leapfrog each other. Generally, the Tyros line leads the Motif line in physical wave memory and content. This is partly due to the higher memory requirements of SA2 voices, which require many additional articulation samples.

Both the Tyros 4 and Motif XF were released in 2010. Both machines use two SWP51L tone generators. (Newer products like the Montage use the SWP70 tone generator.) The Tyros 4 has twice the physical wave memory capacity with respect to the Motif XF. Yet, the Tyros 4 has sample content which did not make it to a deliverable product in the Motif line until the Montage in 2016: Seattle strings, orchestral brass, Celtic violin, vocals (choir and scat), Telecaster guitar and suitcase electric piano.

Tyros 5 expanded this content in 2013. The Motif XF, on the other hand, received a significant update in January 2014. The V.150 update added the “Real Distortion” effects implemented by the Tyros 5. (A few Real Distortion effects actually premiered in the mid-range S950.) The V1.50 update and the “White Motif” color job were life-extenders for the Motif line. I’ve conjectured before that Montage development was late and this is further evidence.

So, what can we expect in the Tyros successor which I’m calling the “Tyros++”. (Yamaha have trademarked the name “GENOS” which may be the name of the follow-on. Only Yamaha really knows.) Personally, I’m hoping for the new orchestral woodwinds from Montage. These are superbly expressive voices. I’m also expecting improved electric pianos, again, of comparable quality to the Montage.

SA2 voices will probably remain exclusive to the Tyros line. Many folks hoped that Montage would have SA2 and it didn’t. SA2 is an important product differentiator — kind of like the premium “Natural” piano voices are to the Clavinova line. I suspect that FM voices will be a differentiator for the premium Montage line in years to come as well. Yamaha tends to think of these three product lines as distinct, so cross-over is carefully controlled and limited.

All of this talk about samples and wave memory size is overly reductionist. The three main (DMI) product lines — Tyros, Motif/Montage, Clavinova — have distinct personalities and features. Motif/Montage is a synthesizer for stage and production studio. Clavinova is primarily a home or church piano. Tyros serves double duty as a home keyboard and as a workstation for performing professionals. (Oddly, many USA customers scoff at this latter role.)

Although these are all fine instruments, the personalities have quirks. Upper-range Clavinovas are Tyros-in-disguise except for multi-pads, third RIGHT voice (i.e., only two voice layers in the right hand), and no expansion memory. Tyros does not have the deep editing or modulation features of the Motif/Montage. The Motif and Montage — strangely! — do not have a tonewheeel organ mode. This latter omission is hard to understand since the Montage competes against other “stage” products like the Korg Kronos and Nord Stage.

Having compared voice programming between PSR-S950 (Tyros 3 without SA2 voices) and MOX (Motif XS sound set), the product lines are voiced (programmed) differently. Motif/Montage effect programming has a harder edge than the Tyros, which is oriented toward oldies, pop and jazz standards. (Yes, Virginia, the Tyros does have latent EDM potential to be tapped.) If the Tyros++ includes the orchestral woodwinds, for example, they will probably be programmed rather differently than Montage. Tyros++ four-part divisi ensembles with the new orchestral woodwinds would be simply brilliant. Can’t wait to see and hear what happens!

One finally editorial comment. The world is filled with product reviews. Publications like Keyboard magazine, Electronic Musician, etc. focus on individual products and rarely present a deep, long-term perspective on products. Sound On Sound reviews occasionally give historical background — usually for esoteric, retro studio pieces. As consumers, we need the long view in order to make the most informed choice.

Motif styles for your arranger!

I’m pleased to announce my collection of Motif performance styles for the Yamaha PSR-S950 arranger and its close cousins: Tyros 5, PSR-S770 and PSR-S970.

Motif and MOX are great song-writing machines with thousands of built-in musical phrases. In Motif-speak, these phrases are called “arpeggios.” Motif/MOX also have built-in “Performances” which combine these musical phrases into jam-along song starters. Although Motif-series workstations are not arranger keyboards, the Performances are fun for live jams, covering many modern genres (contemporary jazz, funk and R&B) which are underserved by arranger workstations.

To fill this gap, I translated 23 Motif performances to PSR/Tyros styles. In keeping with the original source material, these styles are stripped down and lean. No orchestration to get in the way! Some styles use only bass and drum. INTROs and ENDINGs are short and basic. Depending upon the source performance, a translated style may have only three MAIN sections. However, all styles bring the groove.

Many of the styles use Megavoice bass and guitar. Plus, I’ve added appropriate OTS voices. Of course, you’re welcome to ditch the OTS voices and replace them with your own.

Here is the link to the ZIP file: perf_for_s950.zip. The file unzips into a directory named “PERF_for_S950”. The ZIP file includes a short READ ME file with more information.

If you would like to know how I translate a Motif/MOX performance to a PSR/Tyros style, please read the following articles:

Tenor to the max!

A few posts ago, I deconstructed the Yamaha MOX (Motif XS) tenor saxophone patches. The article summarizes the waveform assignment and Expanded Articulation (XA) control for each element within a preset voice. I’m not going to dive into the basics here, so I recommend reviewing the article for background information on XA and its behavior.

The blog entry covered the MOX (Motif XS) tenor sax presets, but not the newer Motif XF (MOXF) presets. The XF series workstations have two additional waveforms:

  1. Tenor Sax2 Growl
  2. Tenor Sax2 Falls

bringing the XF up to the level of Tyros/PSR Super Articulation tenor sax voices. This article deconstructs the “Tenor MAX” preset which makes use of these additional waveforms. The analysis is relevant even in the Montage era because the Montage tenor sax is based upon the XF waveforms (no update in the new model).

Pushing the main topic aside for a moment, Super Articulation 2 (SArt2) voices are a whole different technology and even to this day, the Motif and Montage do not implement SArt2 voices. SArt2 seems to be a premium feature that is reserved for Tyros. SArt2 requires realtime analysis of playing gestures and computation which is beyond basic AWM2 synthesis.

The table below gives the waveform, key range, and velocity range for each element in the “Tenor MAX” patch.

    Elem#  Waveform            XA        Notes   Velocity
    -----  ------------------  --------  ------  --------
      1    Tenor Sax2 Soft     AllAFOff  C-2 G8    1   79
      2    Tenor Sax2 Med      AllAFOff  C-2 G8   80  110
      3    Tenor Sax2 Growl    AllAFOff  C-2 G8  126  127
      4    Tenor Sax2 Hard     AllAFOff  C-2 G8  111  125
      5    Tenor Sax2 Hard     AF2 On    C-2 G8    1  127
      6    Tenor Sax2 Falls    AF1 On    C-2 G8    1  127

When the AF1 and AF2 buttons are OFF, one of the first four waveforms are triggered based upon the key velocity. The four elements cover the dynamic range from soft, through medium, through hard, all the way up to growl. The AF1 and AF2 buttons select particular waveforms depending upon the player’s intention. When AF2 is ON, all key velocities trigger the hard waveform. When AF1 is ON, all key velocities trigger sax falls.

So, bottom line, the “Tenor MAX” programming is just about what I expected.

I hope the analysis of tenor sax programming has helped you to understand XA and Motif/MOX voice programming. If you’re a Tyros/PSR player, then I hope that this analysis has helped you to understand a little bit of the technology beneath the Super Articulation voices.

Montage review: Yes, I’ve played one!

The Yamaha Montage synthesizer is now hitting stores in North America. One of the local retailers (GC in Natick) have a Montage set up for demo. Let’s go!

The demo unit is a Montage8 with the 88-key balanced hammer effect keyboard. I have always liked Yamaha’s upper-end “piano” actions and the Montage8 is no exception. I primarily play lighter “synth” action keyboards like the MOX and the PSR-S950. Fortunately, I spent the previous week working out on the Nord Elecro 2 waterfall keyboard, which requires a slightly heavier touch. I played the Montage8 for a little bit more than an hour without my hands wilting — a good sign.

First off, the demo unit was plugged into two Yamaha HS7 monitors and a Yamaha HS8S subwoofer. GC usually patches keyboards through grotty keyboard amplifiers, so I suspect that Yamaha provided the monitors in order to create the best impression of the Montage. I was dismayed when I started off with a few B-3 organ patches and could not contain the low end. The front panel EQ simply didn’t do the job. Time to check the monitor settings. The HS7s were flat, but the HS8S subwoofer level was cranked. After backing off the sub, all was right with the world.

Yes, some people like to simulate small earthquakes with subsonic frequencies. This, however, is not conducive for acoustic music. It’s not conducive for peaceful co-existence with your bass player either. If you encounter a Montage in the wild, check the EQ before proceeding!

So, as you may have gathered already, this is not a review of Montage for EDM. I took along my church audition folder (covering gospel to contemporary Christian to traditional and semi-classical music) and a small binder of rock, jazz, soul and everything in between. I’d like to think that this is the first time anyone has played “Jesu, Joy of Man’s Desiring” on the Montage, however poorly.

The electric pianos are terrific. I had a fine old time playing soul jazz and what not. Great connection between keys and sound. Comparing against Nord Stage, I would say that the Montage is top notch in this department and definitely a cut above the old Nord Electro 2. Yamaha did not put the Reface CP (Spectral Component Modeling) technology into Montage; they didn’t need to.

Tonewheel organ is still Yamaha’s Achilles’ heel. There is some modest improvement, but the Montage is not in clone territory. In this area, I would say, “Advantage Nord.” If I can cover B-3 with the MOX on Sunday, I’m sure that the Montage is up for medium duty. However, the tonewheel organs lack the visceral thrill of the EPs. I will say that the 88-key action did not inhibit my playing style too much. (If I was going to buy a Montage, tho’, it would be a 6.)

The pipe organs got some tweaks, mainly by enhancing the Motif pipe organ sounds via FM. There are a few lovely patches, but I will still look to the Tyros (and the PSR expansion pack) for true realism. The Nord Electro 5d has modeled principal organ pipes where the drawbars change the registration. Ummm, here, I would give the edge to Nord. Plus, the pipe organs in the Nord sample library are more on par with the Tyros and PSR expansion pack. Hate to say it: Montage pipe organs are good “synthesizer pipe organs,” and that ain’t entirely a compliment.

The new strings are wonderfully realistic, especially for solo/melody lines. I really enjoyed bringing sections in and out dynamically. (The expression pedal was sync’ed to the SuperKnob.) With the changes in our music ministry group, I’ve been playing more melodic and exposed parts. I could really dig playing a reflective improvisation for meditation using the strings and woodwinds under Motion Control.

The classical woodwinds got a boost in Montage, too. The woodwinds are all excellent although the sonic delta above Motif XF (MOXF and MOX, too) was not as “Wow” as the strings. Most likely, my ears were getting tired at that point…

Since I was losing objectivity, I just briefly touched on brass. I need good French horns and Montage did not disappoint. I wish that I had spent time with the solo trumpets and trombones, but my ears were telling me to knock it off.

The new Telecaster (TC) is quite a treat. The “Real Distortion” effects (Motif XF update 1.50) are now standard and the programmers made good use of them. I wish that the Montage had the voice INFO screen from the PSR/Tyros series. The INFO screen displays playing tips and articulations for each voice. This makes it a lot easier to find and exploit the sonic “Easter eggs” in the patches. (“Play AF1 to get a slide. Play AF2 to get a hammer on.”)

Fortunately, it was a rainy Saturday afternoon and the store was empty — disturbed only by the occasional uncontrolled rugrat pounding on some poor defenseless keyboard. Overall, I felt like I really heard the Montage and could make a fair evaluation.

I did not dive into editing, arpeggios, motion sequencing, recording, etc., so this is surely not a comprehensive review. Anyone spending less than one month with this ax cannot claim “comprehensive.” It just ain’t possible, so I would call my initial opinion, “first impressions.” That said, I can see why the Live Sets are important. I mainly dove in through Category Search where some of the touch buttons are a wee too small. Punching up a sound in full combat requires BIG buttons.

Montage looks, feels and sounds like a luxury good. Montage is also priced like a luxury good. The Montage8 MAP is $4000 USD. It is quite a beast physically and I would most likely go for the Montage6 at a “mere” 33 pounds and $3000 USD. None of the Montage line would be an easy schlep, especially when I have to buzz in and out of my church gig fast.

Would I buy one? Tough call. On the same field trip, I got to sit in a Tesla Model S ($71,000 USD) — a luxury car built around a computer monitor or two. I just recently bought a Scion iM (AKA Toyota Auris, Levin, Blade, whatever) for about $20,000 USD. Both cars could get me to the gym and back. I like my iM. What does that say about me as a customer? Do you think I would buy a Montage? Enigmatic.

See the list of new waveforms in the Montage. Also, check out the latest blog posts! Update: May 10, 2016.

Explicit Sax

Hope you got your Motif XF. The current stock is gone, gone, gone.

Comparing waveforms (Montage vs. XF) got me interested in the tenor sax samples and voices. The Yamaha MOX has the basic tenor sax samples (Med, Hard, Growl) while the Motif XF rounds out the set with Soft dynamic samples and falls. The XF (and MOXF) showcase the tenor sax in the “Tenor Max” preset voice.

Since I was curious to discover “what I’m missing,” I deconstructed four tenor sax patches on the MOX. Also, I compared the MOX voices against the Super Articulation tenor sax voices on the PSR-S950 arranger workstation in a listening test. The A/B test was enlightening as the MOX and S950 use the same waveforms — at least to my aging ears! The S950 triggers the samples using Super Articulation (SA) rules while the MOX triggers the samples using Expanded Articulation (XA) rules. Rules aside, you get to the same sonic place.

With XA, there are three main ways that samples are selected and triggered:

  1. Normal: Triggered when keys are played in the regular way.
  2. Legato: Triggered when Mono/Poly mode is Mono and keys are played in a legato manner, i.e. one or more keys are held while a new key is struck.
  3. AF1 and AF2: Triggered when either AF1 is ON, AF2 is ON or AF1/AF2 are both OFF and a key is struck. (The switch states are exclusive.)

See the Yamaha Synthesizer Paramater Manual for all the gory details. XA and SA differ in the amount of automated decision making made by the control software. SA is more automated and XA is more manual, giving the player more explicit control over articulations.

First up is the PRE5:008(A08)Tenor Dynamic AF1 voice. The AF1 and AF2 buttons are assigned in the following way:

    AF1: Mono/Poly mode
    AF2: FEG-D1

The AF1 and AF2 buttons do not affect sample selection in this voice other than putting the keyboard into Mono mode or Poly mode. Thanks to this simplification, it’s a good place to start ‘splaining.

The table below gives the waveform, key range, velocity range and volume level for each element in the patch.

    Elem#  Waveform            XA      Notes   Veloc  Level
    -----  ------------------  ------  ------  ------ -----
      1    Tenor Sax2 Med      Normal  C-2 G8  1   60   110
      2    Tenor Sax2 Med      Normal  C-2 G8  61  90   110
      3    Tenor Sax2 Med Of   Legato  C-2 G8  1   90    86
      4    Tenor Sax2 Hard     Normal  C-2 G8  91 127   120
      5    Tenor Sax2 Hard Of  Legato  C-2 G8  91 127    95
      6    Small Tabla Dom     Legato  C4  G8  1  127    52
      7    Small Tabla Dom     Legato  C-2 B3  1  127    78
      8    Sine                Legato  C-2 G8  1  127    78

The element levels are programmed to even out the perceived loudness across waveforms. Of course, there are many parameters for each element beyond what is shown in the table. For example, each dynamic level (velocity range) has its own filter and amplitude characteristics. There may even by a little velocity-sensitive pitch scoop at the beginning of a note!

The tenor sax waveforms (elements 1 to 5) cover the entire key range: C-2 to G8. The waveforms are assigned to different velocity ranges and are selected (and triggered) depending upon Normal or Legato playing gestures. The first element is triggered when a Normal (detached) gesture is detected and the key velocity (i.e., how hard the key is struck) is between 1 and 60 inclusive. The second element is triggered under the same conditions except the key velocity is between 61 and 90 inclusive. The AF1 button toggles between Mono and Poly mode — whether a legato gesture triggers a Legato element or Normal element.

You can see that only one of the first 5 elements is triggered at a time depending upon the combination of gesture, note range and velocity range. The Tenor Sax2 Med waveforms are played for quieter dynamic levels and the Tenor Sax2 Hard waveforms are played for the louder dynamic levels.

The Tenor Sax2 Med Of and Tenor Sax2 Hard Of waveforms are triggered by a Legato playing gesture. The “Of” in the waveform name means “Offset” and sample playback starts later in the waveform data, that is, skipping the attack part of the waveform. This eliminates the initial attack which is characteric of a sax playing detached notes.

Elements 6 to 8 are triggered only for Legato notes. These elements add a low-level “pop” at the beginning of each note. Think of this sound as a “connective tone” between notes. Tyros’s Super Articulation 2 technology (also known as “Articulated Element Modeling”) blends actual connective tones between notes, producing realistic articulations. The blending requires considerably more samples and processing power than the MOX or the S950.

The PRE5:009(A09) Tenor Soft Legato voice is a simplified version of the first patch. AF1 selects Mono and Poly modes. (AF2 is unassigned.) The patches use only the “Med” waveforms to achieve an overall softer timbre.

    Elem#  Waveform            XA      Notes   Veloc  Level
    -----  ------------------  ------  ------  ------ -----
      1    Tenor Sax2 Med      Normal  C-2 G8  1   70   110
      2    Tenor Sax2 Med Of   Legato  C-2 G8  1   80    99
      3    Tenor Sax2 Med      Normal  C-2 G8  71 127   110
      4    Tenor Sax2 Med Of   Legato  C-2 G8  81 127    99
      6    Small Tabla Dom     Legato  C4  G8  1  127    46
      7    Small Tabla Dom     Legato  C-2 B3  1  127    75
      8    Sine                Legato  C-2 G8  1  127    59

There are two dynamic levels (lower and higher velocity ranges) and two playing gestures (Normal and Legato) forming four combinations of dynamic level and gesture. Elements 6 to 8 implement a connective tone as previously described.

Life gets more interesting in the PRE5:0010(A10) Velo Growl Legato patch. AF1, again, selects Mono and Poly modes. (AF2 is unassigned.)

    Elem#  Waveform            XA      Notes   Veloc   Level
    -----  ------------------  ------  ------  ------- -----
      1    Tenor Sax2 Hard     Normal  C-2 G8  1    60   119
      2    Tenor Sax2 Med Of   Legato  C-2 G8  1    60    86
      3    Tenor Sax2 Growl    Normal  C-2 G8  61  127   125
      4    Tenor Sax2 Hard Of  Legato  C-2 G8  61  100   102
      5    Tenor Sax2 Growl Of Legato  C-2 G8  101 127    94
      6    Small Tabla Dom     Legato  C4  G8  1   127    52
      7    Small Tabla Dom     Legato  C-2 B3  1   127    78
      8    Sine                Legato  C-2 G8  1   127    78

There are roughly three dynamic levels:

  • Velocity 1 to 60: A hard attack is triggered for Normal notes and a soft attack, medium sax is triggered for Legato notes.
  • Velocity 61 to 100: A growl sax is triggered for Normal notes (up to velocity 127) and a soft attack, hard sax is triggered for Legato notes.
  • Velocity 101 to 127: A soft attack, growl sax is triggered for Legato notes.

This programming allows interesting one-hand control. Play soft to get a pure sax tone and play hard to get a growl. Play detached to get a harder attack and play legato to get a softer note attack (when Mono mode is selected via AF1).

The fourth and final patch is PRE5:011(A11) Tenor Growl AF1. The buttons are assigned in the following way:

    AF1: Mono/Poly mode and growl waveform
    AF2: Tenor Sax1 waveform

As you’ll see in the table below, the AF2 button selects the original Motif Tenor Sax1 waveform.

We again have two dynamic levels triggered by velocity ranges 1 to 100 and 101 to 127. Here, the assignable function buttons really come into play.

    Elem#  Waveform            XA        Notes   Veloc   Level
    -----  ------------------  --------  ------  ------- -----
      1    Tenor Sax2 Med      AllAFOff  C-2 G8  1   100   120
      2    Tenor Sax2 Hard     AllAFOff  C-2 G8  101 127   125
      3    Tenor Sax2 Growl    AF1 On    C-2 G8  1   127   127
      4    Tenor Sax2 Hard Of  Legato    C-2 G8  101 127   102
      5    Tenor Sax2 Hard Of  Legato    C-2 G8  1   100   102
      6    Tenor Sax1          AF2 On    C-2 G8  1   127   119

AF1 brings in a growl waveform (element 3) when it is turned ON. AF2 brings in an entirely different tenor sax waveform and tone (element 6) when it is turned ON. The first two elements play a pure tenor sax tone when all AF buttons are OFF. Elements 4 and 5 play a hard sax tone with a softer attack for legato playing gestures. You would be hard pressed to think about these combinations when actually playing — you just have to “go for it” intuitively, knowing that AF1 kicks in the growl.

Turning OFF AF1 while holding the key cuts off the note. Whether this is a bug or a feature is your’s to decide!

The effect programming in these four presets is not very adventurous. The effects are appropriate for a laid-back, mellow sound. Here’s a quick breakdown:

    Preset voice        Insert A   FX preset    Insert B    Dry/Wet
    -----------------  ----------  ---------  ------------  -------
    Tenor Dynamic AF1  VCM EQ 501    Flat     TempoCrosDly   D63>W
    Tenor Soft Legato  VCM EQ 501    Flat     TempoCrosDly   D59>W
    Velo Growl Legato  VCM EQ 501    Flat     TempoCrosDly   D54>W
    Tenor Growl AF1    VCM EQ 501    Flat     TempoCrosDly   D63>W

The Insert A effect is the VCM multi-band EQ. The EQ curve is flat, so the EQ is not coloring the sound at all. The Insert B effect is a tempo cross delay. The dry/wet mix is set conservatively (D54>W) or just plain off (D63>W). The system CHORUS effect is not applied and the system REVERB is a nice REV-X reverb.

The effect programming on the PSR-S950 is a little more exciting and adds a grittier sound for rock and R&B. The RockSax voice employs a distortion plus delay effect algorithm:

    PSR effect: DISTORTION+ > DST+DELAY1

    Parameter       Value
    --------------  --------
    LCH Delay       250.0 ms
    RCH Delay       300.0 ms
    Delay FB Time   375.0 ms
    Delay FB Level  +16
    Delay Mix       50
    Dist Drive      10
    Dist Output     110
    Dist EQ Low     +3 dB
    Dist EQ Mid     +1 dB
    Dry/Wet         D40>W

Transporting this effect to the MOX, you could assign AMP SIMULATOR 2 to insert A. For insert B, you could stick with the tempo cross delay or you could program a fixed delay instead (e.g., DELAY L,R (STEREO)) using the parameters above. A third possibility is to use the MOX’s COMP DISTORTION DELAY algorithm which combines the distortion and delay into a single effect block.

The S950 GrowlSax voice uses a different distortion plus delay algorithm:

    PSR effect: DISTORTION+ > V_DST S+DLY

    Parameter       Value
    --------------  --------
    Overdrive       14%
    Device          Dist2
    Speaker         Combo
    Presence        6
    Output Level    98%
    Delay Time L    250.0 ms
    Delay Time R    250.0 ms
    Delay FB Time   500.0 ms
    Delay FB Level  +12
    Dry/Wet         D32>W
    Delay Mix       44
    FB High Dump    1.0

Programming options are similar. Set MOX insert A to AMP SIMULATOR 1 and either stay with the tempo cross delay for insert B, or set insert B to a fixed delay algorithm. Or, run everything through the MOX’s COMP DISTORTION DELAY algorithm. Tune the Dry/Wet mix to taste.

Hey, here’s a bonus — the effects for the S950 slapback guitar. This might sound good with a sax, too.

    PSR effect: DISTORTION > V_DIST ROCA

    Parameter       Value
    --------------  --------
    Overdrive       20%
    Device          Vintage
    Speaker         Twin
    Presence        14
    Output Level    66%
    Delay Time      16th/3
    Delay FB Level  +3
    L/R Diffusion   +10ms
    Lag             +0ms
    Dry/Wet         D<W63
    Delay Mix       127
    FB High Dump    1.0

In this case, go with AMP SIMULATOR 1 for MOX insert A. Use either the tempo cross delay for insert B or change insert B to the TEMPO DELAY STEREO algorithm.

Even though I’ve discussed voice and effects programming in the context of the MOX, these techniques all apply to the Motif XS, XF and MOXF, too.

If you would like to know more about Super Articulation voices, then please check out: SA and SA2: Is Motif up to the task? I also saved two informative posts from the Motifator forum about Super Articulation and Expanded Articulation.

Read about Motif XF (MOXF) “Tenor MAX” voice programming. Update: 18 May 2016.

Inside the DGX digital pianos

Thanks to SeaGtGruff in the PSR Tutorial Forum, I took a chance to deep dive a few members of the Yamaha DGX portable grand family. The DGX is a “value” line of electronic keyboards offering a digital piano experience at affordable prices.

Polyphony depends on the available processing power and memory bandwidth (i.e., the ability to transfer samples from wave memory to the processing elements).

Here is a small table for some models in the DGX product line. I took a look at the service manual for models with distinctive features, e.g., DSP effects or no DSP effects. The analysis came out rather nice, so I decided to post it here, too.

           Poly Panel XGlite Kits REV CHO DSP IntMem  Processor
           ---- ----- ------ ---- --- --- --- ------  ------------------
DGX-200     32   108   480    12    8   4   0  352KB
DGX-300     32   122   480    12    8   4  38
DGX-500     32   122   480    12    8   4  38         HG73C205AFD SWX00B
DGX-520     32   127   361    12    9   4   0  875KB
DGX-530     32   127   361    12    9   4   0  875KB  YMW767-VTZ  SWL01T
DGX-620     32   127   361    12    9   4   0  875KB
DGX-630     64   130   361    12   29  24 182 1895KB
DGX-640     64   142   381    12   35  44 238 1895KB  R8A02032BG  SWX02
DGX-650    128   147   381    15   35  44 237  1.7MB  R8A02042BG  SWX08
DGX-660    192   151   388    15   41  44 237  1.7MB

Yamaha has several proprietary processors. The least powerful are the SWLs, which are normally used in the entry-level portables. The SWL does not have DSP support for variation/insert effects. Samples are transfered on the same bus as CPU instructions — low bandwidth. SWLs make for inexpensive products, but no DSP effects and relatively low polyphony.

The PSR E-series typically uses SWL01 variants such as the SWL01U in the PSR-E443. It’s interesting that the DGX members using the same SWL01 processor do not have DSP effects. The SWX processors have integrated DSP capability; the SWLs do not.

The SWX family of processors have dedicated buses/memories and a hardware digital signal processor for effects. (I deliberately avoided the acronym “DSP” here to avoid confusion with the way “DSP” is used in arranger terminology.) The SWX08 has three dedicated buses and memories:

  • SHA2 CPU bus and memory (CPU program and data)
  • Wave ROM bus and memory (voice samples)
  • DSP RAM bus and memory (working memory for digital signal processing)

The extra memory and external connections increase cost. However, this is a lot more processing power and memory bandwidth than the lowly SWL!

The SWX00 and SWX02 are earlier members of the family and aren’t used in new designs anymore. It’s too soon to see a service manual for the DGX-660, so any further comment is an educated guess. I suspect an SWX08 operating at a higher clock rate.

The SWX08 is used in the PSR-S750 and the SWX02 is used in the MOX. In both of these cases, the SWX is the main CPU and tone generation is handled by a single SWP51L tone generator chip, not the SWX. Because Yamaha had its own internal IC fab then these products were designed, Yamaha incorporated its own proprietary processor instead of an off-the-shelf Renesas R8. This is an effort to increase Yamaha’s own fab volume. Yamaha may even be using SWX chips in which the processor is good and the DSP is faulty and fused out!

Analysis isn’t complete without looking at wave memory size:

Model   Wave memory                Size         Description
------- -------------------------- ------------ ------------------------
DGX-500 K3N7V402GB-DC10            64Mbit  8MB  Mask ROM 64Mbit (wave)
DGX-530 Lapis Semi MR27V12852L     128Mbit 16MB 8Mx16b P2ROM (prog+wave)
DGX-640 Lapis Semi MR27V12852L     128Mbit 16MB 8Mx16b P2ROM (wave)
DGX-650 Spansion S29GL256S90TFI020 256Mbit 32MB 16Mx16b NOR flash (wave)

Memory size affects the number and quality of the voices. More memory allows more voices, more samples per voice, longer samples per voice, etc. Pianos are especially memory hungry. So, improvements in piano voices usually require significantly more wave memory. SWX wave memory is 16-bits, data parallel.

Now that Yamaha have sold off their IC fabrication capability, they aren’t under the same pressure to use proprietary processors. It’ll be interesting to see if Yamaha adopt ARM for tone generation and/or effects in value product lines. In the Reface line, they have adopted ARM for user interface and control. Yamaha’s Mobile Music Sequencer on iPad has a fairly completely XG engine, so Yamaha certainly aren’t strangers to tone generation on ARM!

If you enjoyed this article, you might also like this overview of the Tyros/PSR arranger family architecture.

Montage wave memory

Folks are speculating about the wave memory in the new Yamaha Montage. Without the actual service manual in hand, it’s impossible to be definitive. However, I think it’s reasonable to assume that:

  1. The Montage uses the new SWP70 tone generator, and
  2. The wave memory interface is the same as the PSR-S970.

Here’s a few details about the SWP70 and wave memory interface in the PSR-S970 arranger workstation. If you buy into the two assumptions above, then these details should apply to the Montage as well.

I realize that my earlier posts dive deep and cover many aspects of the SWP70. This blog post concentrates on a few specific aspects of the wave memory interface in the PSR-S970 instead of the whole she-bang.

The SWP70 has two 8-bit memory data ports — HIGH and LOW — and a common set of wave memory control signals. The interfacing standard is the Open NAND FLASH interface (ONFI). One flash memory device plugs into the HIGH port and a second flash memory device plugs into the LOW port. The two flash memory devices share the control signals, that is, the same control signals are routed to both memory devices.

SWP70_wave_memory

The PSR-S970 memory devices are Spansion S34ML08G1 8Gbit NAND flash memory devices. The S34ML08G1 is a dual-die stack of two S34ML04G1 die. Spansion currently produces the S34ML16G2, which is a quad-die stack of four S34ML04G1 die.

Thanks to ONFI, the 16Gbit (2 GByte) S34ML08G1 is pin compatible with the smaller S34ML08G1. Thus, a tone generator complex with twice the wave memory capacity can be built in the same printed circuit board (PCB) footprint.

The ONFI bus is not the same as the old flash expansion memory DIMM interface as provided in the later Tyros and Motif/MOXF products. The DIMM expansion memory interface consists of two, full-parallel memory channels with separate address and data signals for each channel. An ONFI memory device, on the other hand, has a single bi-driectional (tri-state) data port. The memory address, data and control information are sent to the memory device in byte-serial fashion. (The bus is time-division multiplexed.)

The tri-state electrical interface supports expansion by plugging multiple memory devices onto the same 8-bit multiplexed bus. The control signals and protocol choose the device that drives (or reads) the tri-state bus at a given time.

Yamaha may not have found a convenient way to make the ONFI bus user-extensible. Or, Yamaha have simply decided to not provide end-user wave memory expansion in the field. Yamaha accrue several benefits by dropping the DIMM expansion slots:

  • The cost of the DIMM connector(s) is eliminated including the cost of mounting and testing the connectors.
  • PCB size is greatly reduced.
  • The access cover and chassis hole are eliminated.
  • The cost of stocking another part/SKU is eliminated.

The disadvantage to the end-user is “All the sample space you get is built-in right from the start and no more.”

Yamaha’s new approach to user waveform memory is to reserve space for user samples in the physical wave memory. In other words, the user expansion memory is contained in the same physical package (48-Pin TSOP 12mm x 20mm x 1.2 mm) as the factory waveforms. The Montage specifications describe wave memory as:

Preset: 5.67 GB (when converted to 16 bit linear format), User: 1.75 GB

The compressed factory waveforms occupy 2.835 GBytes of physical memory (assuming a 2-to-1 compression factor). Compressed user waveforms require 0.875 GBytes of physical memory. These figures point toward a 4 GByte physical wave memory size, which would reserve some space for Yamaha’s own future use. BTW, if the actual effective compression factor is higher, then user samples could be stored uncompressed.

For reference, here is a terse summary of the Spansion S34ML08G1 device that is used in the PSR-S970:

    Spansion S34ML08G101TFI000
    Density: 8Gbits (4Gbits x 2)
    Random access: 30us (max)
    Sequential access: 25ns (Min)
    Block erase time: 3.5ms
    Program time: 300 us (typical)
    Data retention: 10 years (typical)
    100,000 program/erase cycles (typical)
    Pricing: $7.84 USD (quantity 250 up)

The data retention time (10 years) should raise a few eyebrows. NAND flash is volatile and charge (data) is eventually lost unless it is refreshed. I wonder how many manufacturers have planned for the day when keyboards, phones or whatever lose presumably “permanent” data stored in flash? Mask-programmable ROM never had this problem… I don’t think Hank done it this way.

Update: Read more about NAND flash data retention.

All site content Copyright © Paul J. Drongowski unless otherwise indicated

(Re)take the stage

A good show starts in the dressing room
And work its way to the stage
— “Get Dressed” by George Clinton

With Winter NAMM 2016 just a few weeks away, I started thinking about how Yamaha might position a new synthesizer workstation (rumored to have the name “Montage”).

Motif has had a long run as a stage instrument favored by many professional touring musicians. It makes a good master controller for a backstage rig and has a wealth of great native sounds. The synth- and piano-key actions are extremely playable with good key-to-sound response.

Over the last few years, Nord and more recently Korg have been taking the stage away from Yamaha. The Nord Stage and Electro series are firmly established as gig boards and the Korg Kronos is coming on strong. Korg products seem to be sprouting everywhere on The Late Night with Stephen Colbert thanks to John Batiste — who can really rock ’em.

I doubt if Yamaha is willing to surrender the stage. This news may disappoint those players who are hoping for a mind-blowing (virtual) analog synthesizer. As a business-person, I would say, “Hmm, we made good money on the stage and in the studio with Motif. Let’s build on that success. Besides, there are plenty of ’boutique’ vendors who make great instruments, like Dave Smith.” Yamaha even granted the name “Sequential” back to Dave Smith.

Yamaha may see the Nord Stage and Korg Kronos as their primary competition for the stage in the synth workstation space. Both instruments combine multiple synthesis techniques into a single integrated package:

  • Wavetable synthesis including sample playback
  • Analog synthesis
  • Frequency Modulation (FM) synthesis
  • Acoustic and electric piano emulation
  • B3 and combo organ emulation

So, which pieces are missing in the current Motif XF? Are you thinking “Reface” yet?

Let’s look at these aspects in turn.

Wavetable synthesis and sample playback

More than a few Internet posters slag AWM (Advanced Wave Memory). I suspect that many of these people would like real analog or modeled analog instead. That’s OK by me because they probably need those sounds for their music. However, there is a wide customer base who need “traditional” instruments (brass, strings, woodwinds, etc.) where sample-playback still rules. AWM is a very successful sample-playback engine and I don’t see Yamaha abandoning AWM.

Yamaha have a new tone generation engine, the SWP70 . The SWP70 is already at work in the PSR-S970 and PSR-S770 arranger workstations . The SWP70 is more than a sample-playback engine as it also performs programmable digital signal processing for effects and more. The S970 implements Motif-quality sounds and effects including Virtual Circuit Modeling (VCM) and the Real Distortion effects that were added to Motif XF in the v1.5 update.

Other posters feel that an SSD is essential for sample streaming. SSD is only one approach, however, and that approach requires a SATA interface for sample I/O. SSD is not necessarily the cheapest design nor does it minimize latency. Yamaha deconstructed the SSD functionality, threw away the SATA interface cost and latency, implemented an Open NAND Flash Interface (ONFI), and embedded sample data caching into the SWP70. The SWP70 has all of the extensibility of NAND flash without the cost of the SATA controller and without SATA bus latency.

As demonstrated by the S970 and S770, the SWP70 is ready to roll for sample-playback and effects processing.

Analog synthesis and FM synthesis

I contend that the Reface products are a field test for SWP70-based synthesis methods that are not tested by the S970 and S770. I have not yet seen absolute evidence that Reface keyboards use the SWP70, but my suspicion is strong.

The Reface CS and Reface DX demonstrate analog physical modeling and 4-operator FM sound synthesis, probably using the SWP70. Please remember that the SWP70 is not just sample-playback; there are digital signal processors in there. These DSP units can be programmed for effects (reverb, etc.) or sound generation. A computer is a computer whether it is an x86 architecture machine or an embedded DSP. Both the Reface CS and Reface DX implement VCM effects, too.

Two more general points about the Reface line. First, the Reface keyboards use an ARM architecture (FM3) processor for control and user interface. This is a major departure from past Yamaha practice. Next, all four keyboards operate on battery power (six “AA” batteries). Low power operation is a significant engineering accomplishment and means that the SWP70 could be deployed in a wide range of portable products — not true of the previous generation SWP51L tone generator.

Acoustic and electric piano emulation

Yamaha demonstrated its commitment to the stage when it introduced the CP1 stage piano and its siblings. The CP1 was well-received.

The CP1 is a bit of a breakthrough product technically. The acoustic piano is implemented mainly through sample-playback. The CP1 physical wave memory is only 128 MBytes. Yamaha eventually released the CP1 acoustic piano samples for Motif XF as part of the Motif XF Premium Collection. We should expect a CP1-level piano or better in the new workstation.

Yamaha “got away” with so few samples overall because the CP1 electric pianos are implemented using Spectral Component Modeling (SCM). “SCM” covers a family of technologies including spectral modeling synthesis (SMS). SMS replaces gobs of samples with computation (AKA “modeling”). SMS eliminates the nasty sonic artifacts due to velocity switched sample-playback because, well, there aren’t any samples, just lots of computations to be performed very quickly.

The Reface CP uses SCM to implement its electric pianos. The Reface CP sounds great. (See my Reface CP snap review.) The Reface CP re-introduces Formulated Digital Sound Processing (FDSP) to model the electric piano pickup. I expect to see SCM electric pianos and a subset of FDSP in the new workstation.

B3 and combo organ emulation

B3 emulation has never been Motif’s strong suit. Nord, in particular, excel at B3 and rotary speaker emulation. Hopefully, Yamaha have addressed this defficiency by incorporating the Reface YC technology into their new workstation.

The Reface YC provides a live front panel that lets a player control the B3 drawbars, percussion, vibrato and rotary speaker on the fly. The ability to play the bars, etc. is essential to B3 technique. A few important improvements include a rotary speaker brake (STOP) position as well as SLOW and FAST, a vibrato/chorus section, and a full percussion section. Hopefully, the vibrato/chorus section emulates the Hammond vibrato/chorus scanner — an effect that is lacking in the Motif (and Tyros/PSR, for that matter).

The Reface YC implements B3 tonewheels through AWM. Is sample-playback better than Nord’s modeling? Of course, a lot rides on rotary speaker simulation, too. I can’t wait to find out. So far, I haven’t been able to find a Reface YC to try one out! If Yamaha wants to take the stage, again, it needs to nail this one.

The bottom line

Yamaha surely have the basic technology to make a machine for stage performers. Hopefully, they have implemented a user interface that is easy to learn, responsive and fun to play — kind of like the live front panels in the Reface series.

The Tyros and the new S770/S970 arrangers sport large displays. The S770 and S970 wide-screens are really nice. Lately, Yamaha have placed greater emphasis on skeuomorphic user interfaces with virtual knobs, sliders, etc. Whether Yamaha goes for a touch panel, only Yamaha knows at this point. It would be kind of cool to have virtual Reface front panels with finger-tweaking controls. But, would it be playable?

Sixteen days to go to Winter NAMM 2016 …

If you liked this article, you might enjoy:

New Yamaha workstation at NAMM 2016?
Reface YC and DX teardowns
The SWP70 tone generator
PSR-S770 and S970 internal architecture
Reface CP: Yes, I played one!

Copyright (c) 2016 Paul J. Drongowski