Genos is coming soon

Well, it’s official. Yamaha have created a special web site for Genos™ related announcements. The first posting is the teaser video which was accidentally released over the weekend. New videos will appear on September 15, 22 and 29. Dealer previews are scheduled during the last two weeks of September. Of course, we’re all dying to see the manuals and the data list PDF!

There’s one key graphic in the Yamaha annual report with the goal: Develop Products with Distinctive Individuality: Add original value to excellent basic functions and develop products others cannot imitate.

That’s a direct quote.

So, please review my summaries of recent Yamaha patents:

This is Yamaha staking out its claim in synth and arranger technology. Patents are expensive and Yamaha do not seek patent protection frivolously.

Hey, hey, serious stuff, but exciting!

Yamaha have filed several patents on styles and style playback using both MIDI data and digital audio. Not just audio drums, but pitched, melodic instrument parts.

When you hear a cello in the demo, that may very well be a recording of a real human being playing a real cello.

The playback engine tracks left hand chords. With respect to audio parts, the engine selects the most appropriate audio phrase from its library of audio recordings according to chord type. Time-stretching (etc.) adjusts for tempo and pitch-shifting adjusts for transposition. Thus, the recorded audio phrase is pitch- and tempo-matched against the musical clock and MIDI. Sounds easy, but try to do it right and do it in real-time!

I’m making a leap from patent filings to product, but my gut feeling as an engineer is strong about this one. (Feel the force, Luke.)

Or, we’ll all have a good laugh.

Copyright © 2017 Paul J. Drongowski

Flash dance?

So, is someone having a good laugh at us or is someone in trouble for accidentally releasing the Yamaha Genos teaser video? Or, is this a planned flash dance to get the fan base stirred up?

Debate is already raging on the PSR Tutorial Forum about the authenticity of the video. If it’s a fake, then hat’s are off to someone with brilliant production skills.

If you’ve seen the video, the instrument is not shown definitely. Rather, two hands conjure pixie dust into a stylized, 3-Dish instrument. There are one or two brief flashes of the rear view. (Not meaning to be crude, here.) The hands are disconnected from any meaningful musical gestures except for one deliberate gesture at roughly 46 seconds. A hand moves a slider in sync with an sforzando sweep in the soundtrack. Shades of Montage’s “Music in Motion” theme.

Observations include: six knobs, nine sliders, ten registration buttons, (probable) touch screen. Yamaha seem to have cornered the market on red and blue LED given this video and the Montage! Special thanks to Marcus, Maarten and Vinciane on the PSR Tutorial Forum for their keen eyes and steady disposition.

Here are a few captures from the unverified teaser video for the new Yamaha Genos arranger workstation. First up, the Genos logo. [Click on images for higher resolution.]

Next, is a close view of the knobs and faders. Mid-range PSR and Tyros models have a drawbar mode. Perhaps Yamaha have now given the drawbars proper faders? If true, Genos could be a terrific stage gig machine for the non-EDM types who crave quality acoustic piano, electric piano and B-3 organ. A shame that Montage didn’t fully nail drawbar control.

Finally, not so delicately put, is the rear view, presumably with all of the usual connectors provided for.

We’ll know for sure, soon. Dealer preview dates are September 18 (Europe) and September 28 (North America).

If you’re curious about what a new Yamaha arranger might do, then please read my blog posts about recent Yamaha R&D patents:

Copyright © 2017 Paul J. Drongowski

Inside Reface YC and CP

Like the Yamaha Reface DX and CS, the Reface YC and CP are brother and sister.

The Reface DX and CS use the Yamaha proprietary SSP2 integrated circuit (IC) for sound synthesis. A few minor hardware differences and the front panel aside, the main difference between DX and CS is software. The YC and CP designs are analogous although the tone generation method and hardware are different.

Sample playback and memory bandwidth

Many people focus on the computational aspects of tone generation and wave memory size, not realizing that memory bandwidth is just as important, if not critical, for sample playback. Waveform samples need to flow from wave memory to the tone generation apparatus whether tone generation is performed on a CPU or a proprietary tone generator IC like Yamaha’s previous generation SWP51L and the now current SWP70.

Sustainable polyphony depends on memory bandwidth. If available bandwidth is low, then polyphony is low. Raise bandwidth and you can raise polyphony, too, provided adequate computational resources (e.g., tone generation channels or CPU cycles) are available.

Several factors affect memory bandwidth.

  • The most obvious factor is the raw speed of the memory technology. Fast memory means high bandwidth.
  • Next is the kind of memory communication channel: shared or dedicated. If waveform samples and CPU code reside in the same physical memory component, then bandwidth must be shared between the CPU and the tone generator, lowering tone generation bandwidth and polyphony. Bandwidth is higher when the CPU and tone generator each have their own memory channel and component. Concurrency wins!
  • Bandwidth sometimes depends on the read access mode or pattern of the memory component. Concerns here include random vs. sequential access, word vs. paged, etc. This subject is a little too deep for this short note.
  • Finally, bandwidth depends on the bus organization: serial or parallel. Parallel buses move each bit in a word on a dedicated wire. Serial buses move moves sequentially on one or a few wires. Parallel is fast; serial is slower.

Of course, there are further factors and choices like the necessity for read-write access, non-volatile data storage, and so forth.

The instrument designer faces the challenge of supplying sufficient memory bandwidth, tone generation channels and polyphony at a particular price point. Polyphony and price point are market-driven requirements. Memory bandwidth and tone generation resources are technological. The designer must work within both kinds of requirements and constraints.

Internet discussions tend to dwell on memory speed and component cost alone, neglecting system-level design costs like board complexity, wiring and testing. A simple rule of thumb is, “More IC pins and wires means higher system cost.” Serial communication decreases pins and wires, but it compromises bandwidth. Shared buses also decrease the number of pins and wires, again, penalizing bandwidth. One expects to find serial communication and/or shared buses in low price products, while higher price products can reap the benefits of dedicated, parallel communication.

I must note that commodity bulk flash memory uses a serialized memory bus, but it does so by sequential paged reads and data caching. The SWP70 is compatible with commodity flash and uses a dedicated RAM cache to achieve high sample bandwidth. This scheme is cheaper than the SWP51L with its parallel dedicated wave bus.

Processor primer

Yamaha have several different processors at their disposal for main CPU, tone generation and effect processing (DSP) chores:

  • SWLxx: SWL processors, like the SWL01U, have integrated CPU, tone generation and DSP resources in the same IC. CPU instructions, data and waveform samples travel on the same shared bus. SWL processors are typically designed into value (i.e., entry-level) products. SWLs are also low power and ready for battery operation.
  • SWXxx: SWX processors have integrated CPU, tone generation and DSP resources on the same IC. CPU, tone generation and DSP each have a dedicated memory channel. SWX processors often appear in mid-range products.
  • SWPxx: SWP processors have a large number of tone generation and DSP elements, and no main CPU. The SWPs must be controlled by a separate main CPU.
  • SSP2: The SSP2 has an integrated CPU and DSP elements. The SSP2 is not used in AWM2 applications, appearing instead in computationally intensive synthesis engines (Reface CS and DX), vocal harmony processors, and digital mixers.

The SWL, SWX and SSP2 series processors are true “system on a chip (SOC)” designs with analog-to-digital conversion, bit-serial data (UART), USB, SPI and other interfaces. The CPU core is usually a variant of the Renesas SH architecture family. Architectural commonality facilitates code reuse across products. Yamaha have damned good engineers.

There are two different types of SWX processor: SWX02/SWX03 and the SWX08. The 02/03 variants appear in lower priced mid-range products. Examples include the MOX6 (SWX02), PSR-S650 (SWX02) and Piaggero NP-32 (SWX03). The SWX08 appear in the upper mid-range: PSR-S770, Reface YC and Reface CP.

Sometimes an SWX processor is used as the main computer controlling an SWP. For example, the SWX02 is the main computer in the MOX6/MOX8, controlling an SWP51L. Similarly, the SWX08 is the main computer in the PSR-S750, controlling an SWP51L. In both cases, the SWP51L handles all tone generation duties. Yamaha increases fabrication volume when it uses an SWX in this way.

At this point, semiconductor folks might ask if Yamaha fuses off TG or DSP deficient SWX08s and assigns them to main computer duty only. This strategy cuts waste as it deploys SWX08s with perfectly good CPUs and faulty, fused off TG and/or DSP circuitry. This is standard practice throughout the industry, so please don’t freak out.

Reface YC and Reface CP

The Yamaha Reface YC and the CP share the same digital logic board design. The main large-scale integrated (LSI) components are:

IC CPU (SWX08)   Yamaha R8A02042BG         SH-2A CPU core
Work SDRAM       Winbond W9812G6JH-6       8M x 16-bit word, 166MHz
DSP SDRAM        Winbond W9864G6KH-6       4M x 16-bit word, 166MHz
Program/Wave YC  Cypress S29GL256S90TFI020 16M x 16-bit word NOR flash
DAC              Asaki Kasei AK4396VF-E2   192kHz, 24-bit stereo DAC
Panel scan CPU   MB9AF141LAPMC1            ARM Cortex-M3 (32-bit core)
ADC              TI PCM1803ADBR            96kHz, 24-bit stereo ADC

The same ARM Cortex-M3 (32-bit core) processor is used in the Reface CS and Reface DX for panel and keyboard scan. Potentiometers and so forth are sensed by the ARM’s 12-bit analog to digital converter (ADC). Key scanning is performed through GPIO lines. (I don’t see any way to expand beyond 37 keys, unfortunately.)

The SWX08 is the main control computer. It handles the 5-pin MIDI interface and the USB interface. The ARM communicates with the SWX08 over a serial link (UART). Integral tone generation and DSP elements synthesize digital audio and effects.

The AK4396VF-E2 digital to analog converter (DAC) is also used in the PSR-S770 and PSR-S970 arranger workstations (among other Yamaha products.) The Montage employs the AK4393VM-E2 DAC by way of comparison. Digital audio for the internal speakers is converted by the Yamaha YDA176 digital amplifier.

The PCM1803ADBR ADC sends serial digital audio (24-bit I2S format) to the SWX08 where it is mixed with the synthesized tones.

DSP processors on the SWX08 have their own dedicated 16-bit data channel to DSP SDRAM (i.e., working memory for effects). The wave memory (NOR flash ROM) has a dedicated 16-bit parallel channel for samples. Wave memory is labelled “E:64MB / O:32MB”. Presumably, this means that the CP needs 64MBytes for electric piano waveforms and the YC needs 32MBytes for organ waveforms. I wonder if Yamaha substitute a larger, pin-compatible flash ROM in the Reface CP? I don’t have the Reface CP service manual in order to resolve this conjecture.

Summary

So, there you have it. Yamaha wisely designed the CS and DX as a pair and designed the CP and YC as a pair. I’m sure that shared board designs reduced their manufacturing costs.

Reface sales seem to be coming to an end. Nearly all Reface models have sold through in North America. Yamaha has either decided to cancel the Reface after the first production run or they will launch Reface 2.0, perhaps with full-size keyboards. They could easily design the guts of the YC and/or CP into the Piaggero NP-12 chassis. That would make for one killer, battery-powered stage machine!

Copyright © 2017 Paul J. Drongowski

Vocaloid keyboard announced

At long last, Yamaha have announced their Vocaloid™ keyboard, the VKB-100. The VKB-100 is a keytar design similar to the prototype shown at the “Two Yamahas, One Passion” exhibition at Roppongi Hills, Tokyo, July 3-5, 2015.

More details will be released in December 2017. However, this much is known:

  • Lyrics are entered using a dedicated application for smart phones and tablets via Bluetooth.
  • VY1 is the built-in default singing voice.
  • Up to 4 Vocaloid singers can be added using the application.
  • Four Vocaloid voices will be available: Hatsune Miku, Megpoid (GUMI), Aria on the Planets (IA), and Yuzuki Yukari.
  • Melody is played by the right hand while the left hand adds expression and navigates through the lyrics.
  • A speaker is built-in making the VKB-100 a self-contained instrument.

The VKB-100 was demonstrated at the Yamaha exhibition booth at the “Magical Mirai” conference held at the Makuhari Messe, September 1-3, 2017. Price is TBD.

VY1 is a female Japanese voice developed by Yamaha for its own products. VY1 does not have an avatar or character like other Vocaloid singers. This makes sense for Yamaha as they can freely incorporate VY1 in products without playing royalties or other intellectual property (IP) concerns.

The Vocaloid keyboard has had a long evolution, going through five iterations. The first three models did not use preloaded lyrics. Instead, the musician entered katakana with the left hand while playing the melody with the right hand. This proved to be too awkward and Yamaha moved to preloaded lyrics. The left hand controls on the neck add expression using pitch and mod wheels. The left hand also navigates through the lyrics as the musician “sings” via the instrument. The current lyrics are shown in a display just to the left of the keyboard where the musician can see them.

Yamaha will release more information on the Vocaloid keyboard site.

If you want to get started with Vocaloid and don’t want to spend a lot of Yen (or dollars), check out the Gakken NSX-39 Pocket Miku. Pocket Miku is a stylophone that plays preloaded Japanese lyrics. The NSX-39 also functions as a USB MIDI module with a General MIDI sound set within a Yamaha XG voice and effects architecture.

Be sure to read my Pocket Miku review and browse the resource links available at the bottom of the review page.

Copyright © 2017 Paul J. Drongowski

Vox VX50KB keyboard amplifier

With all of the new Korg keyboards, I missed the announcement of the Vox VX50KB keyboard amplifier. The VX50KB is part of the new Vox VX50 series of amplifiers. All the amps in the series have a street price of $229.99 and are currently shipping.

The VX50KB is a three channel keyboard amplifier that drives 50 Watts into an 8 inch, two-way coaxial speaker. Like the new Continental, the VX50KB warms up the sound with Nutube. Weight is an easy to wrangle 9 pounds (4.1 kg).

In the keyboard realm especially, sound quality depends upon the speaker and cabinet as a system. The VX50KB design is a bass reflex structure.

I’ll defer any judgement about sound quality until I hear one in action. Fat, deep organ tones quickly reveal any bass flatulence as well as the speaker’s ability to move air in the low frequency range. Oddly enough, mid-rangy French horns reveal flatulence, too. Strings are good for testing “boxiness” or “graniness.” If you want to hear grain, just listen to any amplifier in Roland’s KC series. The KC tweeters are inadequate.

September 1st goes to Korg

September 1st.

While rumors of Yamaha GENOS abound and Roland prepare to redefine the future (again), Korg drop:

Holy smokes! Normally this much excitement is reserved for Winter NAMM. Everybody wants a piece of Christmas season sales!

The KROSS 2 is an update of the KROSS synthesizer workstation. Not to be outdone by the Yamaha MX update, Korg has added two colors: dark blue and a limited edition red marble. The KROSS 2 boasts increased polyphony (from the previous 80 voices to 120 voices) and more preset sounds (from the previous 809 presets to 1,075 presets). There is a new stand, too.

The PA700 and PA1000 are updates on the PA600 and PA900 arrangers. You could kind of see the update coming as prices dropped on the PA600 and PA900 in recent months. The instruments have a new, maroon-ish color. Exapnsion memory is increased (PA1000: 600MB, PA700: 256MB). In addition to new voices and styles, the PA1000 update includes interactive KAOSS FX. KORG’s advertising is promoting the color touch panel and songbook, both of which are strong differentiators for the Korg line.

The big news is the Vox-branded Continental. It’s much more than an organ and includes acoustic piano, electric piano, drawbar organ, COMPACT organ (AKA Farfisa), strings, brass and more. Other notable features are the semi-weighted waterfall keyboard and Nutube valve drive. This puts the Connie in square competition with the Nord Electro 5d. The price is Nord-class, too: about $1,999 USD for the 61-key model. (There’s a 73-key model, too, $2,199 street.)

Aesthetically, the Connie has the old Vox color, but the narrower (and much lighter!) body looks chopped. The stand is not nearly as elegant as the old “S” stand. Nonetheless, it’s great to see a manufacturer take a crack at the old classic!

Copyright © 2017 Paul J. Drongowski

Montage tidbits

Martin Harris. Now, there’s a person who loves his job!

Even though the camera work is a little shaky, I recommend the Montage demonstration by Martin Harris of Yamaha.

Martin’s demo concentrates on acoustic and electric pianos, section and solo strings, brass, Irish whistle and pads — all from a cinematic perspective. Not much EDM here.

I like Martin’s demonstrations because he adds information about sample and voice development. Even though he calls it a “whistle stop tour,” it’s more like a tour of the world. Yamaha have traveled the world to sample the best instruments and players. Here are a few examples as mentioned by Martin:

  • Section and solo strings: Seattle
  • Brass: Los Angeles (L.A. horns)
  • Classical men’s choir: Germany
  • Classical boy’s choir: Estonia
  • Flamenco guitar: Madrid
  • Brazilian percussion: Sao Paulo
  • Turkish percussion: Istanbul
  • Iranian percussion: Tehran
  • Middle Eastern percussion: Bahrain
  • Irish whistle: Ireland

Before people complain about the cost of a top-of-the-line keyboard like the Montage or Tyros, they really should take the cost and time of sampling and voice development into account!

The Montage CFX grand piano is all new sampling. Martin stated the compressed total waveform size as 300 Mbytes, approaching 1 GBytes uncompressed. At demo time (April 2016), the Montage CFX was the biggest sampled piano in the Yamaha line. The Rhodes and Wurlitzer electric pianos are also new sampling.

Guitars also got an update. Martin and Gibson steel guitars were sampled. The sampled Telecaster is a $60,000, 1957 vintage Tele. Martin mention how, in the past, Yamaha removed the dirt from samples. Today they leave in some of the idiosynracies, charm and character.

If you enjoyed Martin’s demo, here are a few blog posts to check out. Last April, I made a list of new waveforms in the Montage vs. the Motif XF. I also wrote a thought piece about waveform memory size and sample development.

New sound development, including sampling, is a continual, on-going process at Yamaha. In an era when waveform memory is relatively big and inexpensive, sound developers need to work overtime in order to fill available memory space. I think the limiting factor now is the amount of time and human resources available to produce new samples and to program new expressive voices.

Copyright © 2017 Paul J. Drongowski

Reface MIDI pin-out

The Yamaha Reface series keyboards have a small DIN-6 connector that carries both MIDI IN and MIDI OUT signals. The keyboards ship with an adapter that converts DIN-6 to two standard 5-pin DIN connectors. Plug in the adapter cable, connect with standard MIDI cables, and you’re good to go.

A few people on the Yamaha Synth site inquired about the Reface MIDI pin-out. Their questions piqued my curiosity leading to a dive into Yamaha service manuals. The results are posted below along with some essential background information about MIDI signaling.

Use this information at your own risk. That goes for anything on my site!

Although I’ve assembled many boards and kits, I make horrible cables. I much prefer to use commercial MIDI adapters and cables. Life is too short to debug and repair shoddy, unreliable cables. Plug and play solutions are the most flexible; you never know when you’ll need a different configuration of female sockets and male plugs. Adapters like the Yamaha Reface adapter are the most flexible, reliable solution although they are product specific.

The Yamaha part number for the Reface MIDI adapter cable (MD6P-DIN) is ZP893500. If you are a USA customer, you can order the cable on-line from Yamaha 24×7. Last I checked, the cable is also available from the on-line retailer Full Compass. I’ve ordered from both Full Compass and Yamaha 24×7 in the past and they both get a thumbs up.

MIDI background information

If you’re going to do anything with MIDI hardware or software, I strongly recommend becoming a member of the MIDI Association. Please take a look at the MIDI circuit reference design:

This is the original electrical specification diagram. It’s good enough to understand MIDI operation. The original circuit has been superceded by version 1.1 which includes important additions for 3.3 Volt operation and reduced radio frequency interference (RFI). Register to become a member and download the new reference circuit.

As the MIDI specification notes, “The MIDI circuit is a 5mA current loop; logical 0 is current ON.” The MIDI sender and the MIDI receiver are optically isolated. The sender (MIDI OUT) controls an LED embedded within the receiver’s opto-isolator (MIDI IN).

The DIN connector on the MIDI OUT side has the following pins:

  • Pin 1: No connection (NC)
  • Pin 2: Ground
  • Pin 3: No connection (NC)
  • Pin 4: Connected to +5V (3.3V) through a current limiting resistor
  • Pin 5: Serial data output (UART TX)

The DIN connector on the MIDI IN side has the following pins:

  • Pin 1: No connection (NC)
  • Pin 2: No connection (NC)
  • Pin 3: No connection (NC)
  • Pin 4: LED anode (+)
  • Pin 5: LED cathode (-)

Pin 2 may optionally be connected to ground through a capacitor. Please see the current MIDI specification for more info. (Become a member!)

The goal is to turn the opto-isolator LED ON and OFF. The LED polarity (direction of current flow) is important. The MIDI sender turns the electrical current ON and OFF, that is, it turns the LED ON and OFF. This action sends a serial stream of bits from the sender to the receiver.

While writing, it occurred to me — the MIDI Association never formally named these signals. Thus, you get my names like “the thingy connected to the anode of the LED.”

Example: PSR-S910

The following diagram is the MIDI IN and MIDI OUT circuit within the Yamaha PSR-S910 arranger workstation. [Click on the image to enlarge.] I went back to this older product because it uses a transistor pair on the MIDI OUT side, just like the Reface series. That should make it easier to match up the MIDI signals with the Reface DIN-6 pins. Recent products employ a logic gate instead of a transistor pair to switch current through the MIDI loop.

Please note that the S950 MIDI signals are exactly what we expect knowing the MIDI reference design. The “extra stuff” suppresses RFI among other things.

Example: Reface CS

The diagram below depicts the Reface CS MIDI interface circuit (with a few edits for brevity and format). The Reface circuit is similar to the S910 circuit.

Here are the MIDI signals at the Reface DIN-6 pins:

  • Pin 1: MIDI IN, Ground via decoupling capacitor
  • Pin 2: MIDI OUT, Ground
  • Pin 3: MIDI IN, LED cathode (-)
  • Pin 4: MIDI OUT, TX serial data
  • Pin 5: MIDI IN, LED anode (+)
  • Pin 6: MIDI OUT, pull-up to 3.3V

Please note the DIN-6 pin numbering, position and connector orientation!

Now, let’s match up the Reface DIN-6 pins to regular MIDI DIN-5 pins. The MIDI IN match ups are:

       MIDI IN      MIDI IN
    Reface DIN-6   MIDI DIN-5      Function
    ------------  ------------   -------------
                     Pin 1       No connection
        Pin 1        Pin 2       Ground via decoupling capacitor
                     Pin 3       No connection
        Pin 5        Pin 4       LED anode (+)
        Pin 3        Pin 5       LED cathode (-)

I put the MIDI DIN-5 pin numbers in ascending order. The MIDI OUT match ups are:

      MIDI OUT      MIDI OUT
    Reface DIN-6   MIDI DIN-5      Function
    ------------  ------------   -------------
                     Pin 1       No connection
        Pin 2        Pin 2       Ground
                     Pin 3       No connection
        Pin 6        Pin 4       Pull-up to 3.3V
        Pin 4        Pin 5       TX serial data

At this point, I suggest grabbing your Reface MIDI adapter cable and tracing the DIN-6 to DIN-5 connections with a continuity checker. This is the best way to come to grips with the real-world connections and signal/pin positions.

Copyright © 2017 Paul J. Drongowski
Reface and PSR-S910 diagrams are Copyright © Yamaha Corporation

Pocket Miku: Module review

So far, I’ve posted several articles with resources for the Yamaha NSX-1 eVocaloid integrated circuit and the Gakken Pocket Miku (NSX-39), which is based on the NSX-1 chip. (See the bottom of this page for links.) This post pulls the pieces together.

Pocket Miku is both a vocal stylophone and a Yamaha XG architecture General MIDI (GM) module. There are plenty of Pocket Miku stylophone demos on the Web, so I will concentrate on Pocket Miku as a module.

Pocket Miku connects to your PC, mobile device or whatever over USB. The module implements sixteen MIDI channels where channel one is always assigned to the Miku eVocaloid voice and channels 2 to 16 are regular MIDI voices. As I said, the module follows the XG architecture and you can play with virtually all of the common XG features. The NSX-1 within Pocket Miku includes a fairly decent DSP effects processor in addition to chorus and reverb. The DSP effect algorithms include chorus, reverb, distortion, modulation effects, rotary speaker and a lot more. Thus, Pocket Miku is much more than a garden variety General MIDI module.

My test set up is simple: Pocket Miku, a USB cable, a Windows 7 PC, Cakewalk SONAR and a MIDI controller. Pocket Miku’s audio out goes to a pair of Mackie MR5 Mk3 monitors. The MP3 files included with this post were recorded direct using a Roland MicroBR recorder with no added external effects.

The first demo track is a bit of a spontaneous experiment. “What happens if I take a standard XG MIDI file and sling it at Pocket Miku?” The test MIDI file is “Smooth Operator” from Yamaha Musicsoft. Channel 1 is the vocal melody, so we’re off to a fast start right out of the gate.

One needs to put Pocket Miku into NSX-1 compatibility mode. Simultaneously pressing the U + VOLUME UP + VOLUME DOWN buttons changes Pocket Miku to NSX-1 compatibility mode. (Pocket Miku responds with a high hat sound.) Compatibility mode turns off the NSX-39 SysEx implementation and passes everything to the NSX-1 without interpetation or interference. This gets the best results when using Pocket Miku as a MIDI module.

Here is the MP3 Smooth Operator demo. I made only one change to the MIDI file. Unmodified, Miku’s voice is high enough to shatter glass. Yikes! I transposed MIDI channel 1 down one octave. Much better. Pocket Miku is singing whatever the default (Japanese) lyrics are at start-up. It’s possible to send lyrics to Pocket Miku using SysEx messages embedded in the MIDI file. Too much effort for a spontaneous experiment, so what you hear is what you get.

Depending upon your expectations about General MIDI sound sets, you’ll either groan or think “not bad for $40 USD.” Miku does not challenge Sade.

One overall problem with Pocket Miku is its rather noisy audio signal. I don’t think you can fault the NSX-1 chip or the digital-to-analog converter (DAC). (The DAC, by the way, is embedded in the ARM architecture system on a chip (SOC) that controls the NSX-1.) The engineers who laid out the NSX-39 circuit board put the USB port right next to the audio jack. Bad idea! This is an example where board layout can absolutely murder audio quality. Bottom line: Pocket Miku puts out quite a hiss.

The second demo is a little more elaborate. As a starting point, I used a simple downtempo track assembled from Equinox Sounds Total Midi clips. The backing track consists of electric piano, acoustic bass, lead synth and drums — all General MIDI. Since GM doesn’t offer voice variations, there’s not a lot of flexibility here.

I created an (almost) tempo-sync’ed tremolo for the electric piano by drawing expression controller events (CC#11). My hope was to exploit the DSP unit for some kind of interesting vocal effect. However, everything I tried on the vocal was over-the-top or inappropriate. (Yes, you can apply pitch change via DSP to get vocal harmony.) Thus, Miku’s voice is heard unadulterated. I eventually wound up wasting the DSP on a few minor — and crummy — rhythm track effects.

I created four lyrical phrases:

A summer day           Natsu no hi
f0 43 79 09 00 50 10 6e 20 61 2c 74 73 20 4d 2c 6e 20 6f 2c 43 20 69 00 f7

Your face              Anata no kao
f0 43 79 09 00 50 10 61 2c 6e 20 61 2c 74 20 61 2c 6e 20 6f 2c 6b 20 61 2c 6f 00 f7

A beautiful smile      Utsukushi egao
f0 43 79 09 00 50 10 4d 2c 74 73 20 4d 2c 6b 20 4d 2c 53 20 69 2c 65 2c 67 20 61 2c 6f 00 f7

A song for you         Anata no tame no uta
f0 43 79 09 00 50 10 61 2c 6e 20 61 2c 74 20 61 2c 6e 20 6f 2c 74 20 61 2c 6d 20 65 2c 6e 20 6f 2c 4d 2c 74 20 61 00 f7

The Japanese lyrics were generated by Google Translate. I hope Miku isn’t singing anything profane or obscene. 🙂

I did not create the SysEx messages by hand! I used the Aides Technology translation app. Aides Technology is the developer of the Switch Science NSX-1 Arduino shield. The application converts a katakana phrase to an NSX-1 System Exclusive (SysEx) message. Once converted, I copied each HEX SysEx message from the Aides Tech page and pasted them into SONAR.

Finally, the fun part! I improvised the Miku vocal, playing the part on a Korg Triton Taktile controller. What you hear in the MP3 Pocket Miku demo is one complete take. The first vocal section is without vibrato and the second vocal section is with vibrato added to long, held notes. I added vibrato manually by drawing modulation (CC#1) events in SONAR, but I could have ridden the modulation wheel while improving instead.

The overall process is more intuitive than the full Vocaloid editor where essentially everything is drawn. Yamaha could simplify the process still further by providing an app or plug-in to translate and load English (Japanese) lyrics directly to an embedded NSX-1 or DAW. This would eliminate a few manual steps.

Overall, pre-loaded lyrics coupled with realtime performance makes for a more engaging and immediate musical experience than working with the full Vocaloid editor. If Yamaha is thinking about an eVocaloid performance instrument, this is the way to go!

The pre-loaded lyric approach beats one early attempt at realtime Vocaloid performance as shown in this You Tube video. In the video, the musician plays the melody with the right hand and enters katakana with the left hand. I would much rather add modulation and navigate through the lyrics with the left hand. This is the approach taken for the Vocaloid keytar shown on the Yamaha web site.

Here is a list of my blog posts about Pocket Miku and the Yamaha NSX-1:

I hope that my experience will help you to explore Pocket Miku and the Yamaha NSX-1 on your own!

Before leaving this topic, I would like to pose a speculative question. Is the mystery keyboard design shown below a realtime eVocaloid instrument? (Yamaha U.S. Patent number D778,342)

The E-to-F keyboard just happens to coincide with the range of the human voice. Hmmmm?

Copyright © 2017 Paul J. Drongowski

Yamaha CSP pianos: First take

Yamaha just announced the Clavinova CSP series of digital pianos. There are two models: CSP-150 and CSP-170. The main differences between the 170 and 150 are keyboard action (NWX and GH3X, respectively) and sound system (2 x 45W and 2 x 30W, respectively). USA MSRP list prices are $5,399 to $5,999, and $3,999 to $4,599 USD.

These are not stage pianos. They are “furniture” pianos which complement and fit below the existing CLP line.

Here’s my imagined notion of the product pitch meeting:

Digital piano meets arranger meets Rock Band. Let’s say that you don’t have much (any) musical training, but you want to play along with Katy Perry. Sit down at the CSP with your smart device, install the Smart Pianist app and connect via Bluetooth. Call up “Roar” in the app and get a simple musical score. Start the song, follow the LEDs above the keys and play along with the audio. The app stays in sync with the audio and highlights the notes to be played on each beat. So, if you learned a little bit about reading music, you’re good to go.

Sorry, a little bit more than an elevator pitch, but this is first draft writing! 🙂

That is CSP in a nutshell. The CSP is a first-rate piano and it has a decent collection of non-piano voices and arranger styles. The CSP even includes the Hammond-ish “organ flutes” drawbar organ voices. So, if you want to jam out with electric guitar, you’re set. If you want to play chords with your left hand and freestyle it, the CSP is ready.

If you’re looking for a full arranger workstation, though, you’re missing some features. No pitch bend wheel, no mod wheel, no multipads, no accompaniment section (MAIN, FILL, …) buttons. No voice editing; all voices are preset.

And hey, there’s no display either! The Smart Pianist app is your gateway to the CSP feature set. You can select from a few voices and styles using the FUNCTION button and the piano keyboard, but you need the app to make full use of the CSP. Eliminating the CLP’s touch panel, lights and switches takes a lot of cost out of the product, achieving a more affordable price point.

I could see the CSP appealing to churches as well as home players given the quality of the piano and acoustic voices. Flipping the ON switch and playing piano is just what a lot of liturgical music ministers want. The more tech savvy will dig in. Pastors will appreciate the lower price of the CSP line.

From the perspective of an arranger guy, the CSP represents a shift away from the standard arranger. For decades, people want to play with their favorite pop tunes. In order to use a conventional arranger (no matter what brand), the musician must find a suitable style and the musician must have the musical skill to play a chord with the left hand, even if it’s just the root note of the chord. Often the accompaniment doesn’t really “sound like the record” and the player feels disappointed, unskilled and depressed. Shucks, I feel this way whenever I make another attempt at playing guitar and at least I can read music!

The CSP is a new paradigm that addresses these concerns. First, the (budding) musician plays with the actual recording. Next, the app generates a simplified musical score — no need to chase after sheet music. The score matches the actual audio and the app leads the player through the score in sync with the audio. Finally, the CSP’s guide lights make a game of playing the notes in the simplified score.

We’ve already seen apps from Yamaha with some of these features. Chord Tracker analyzes a song from your audio music library and generates a chord chart. Kittar breaks a song down into musical phrases that can be repeated, transposed and slowed down for practice. The Smart Pianist app includes Chord Tracker functionality and takes it to another level producing a two stave piano score.

Notice that I said “a score” not “the score.” Yamaha’s audio analysis only needs to be good enough to produce a simple left hand part and the melody. It does not need to generate the full score for a piece of music. Plus, there are likely to be legal copyright issues with the generation of a full score. (A derivative work?)

Still, this is an impressive technical feat and is the culmination of years of research in music analysis. Yamaha have invested heavily in music analysis and hold many patents. Here are a few examples:

  • U.S. Patent 9,378,719: Technique for analyzing rhythm structure of music audio data, June 28, 2016
  • Patent 9,117,432: Apparatus and method for detecting chords, August 25, 2015
  • U.S. Patent 9,053,696: Searching for a tone data set based on a degree of similarity to a rhythm pattern, June 9, 2015
  • U.S. Patent 9,006,551: Musical performance-related information output device, April 14, 2015
  • Patent 9,275,616: Associating musical score image data and logical musical score data, March 1, 2016
  • U.S. Patent 9,142,203: Music data generation based on text-format chord chart, September 22, 2015

The last patent is not music analysis per se. It may be one of several patents covering technology that we will see in the next Yamaha top of the line (TOTL) arranger workstation.

I think we will be seeing more features based on music analysis. Yamaha’s stated mission is to make products that delight customers and to provide features that are not easily copied by competitors. Yamaha have staked out a strong patent position in this area let alone climbing over the steep technological barrier posed by musical analysis of audio.

Copyright © 2017 Paul J. Drongowski