You spin me right round

Spot product shortages have sparked speculation about discontinued products, new products, etc. Given the human propensity to look for and find patterns, it’s no wonder that conspiracy theories take hold!

The on-line inventory picture is mixed. Some retailers show Yamaha Montage/MODX, for example, in stock, some show them out of stock pending September availability and, in one case, discontinued.

Random “discontinued” tags seem to come and go. A month ago, the Yamaha Canada site marked the MX as discontinued. Now the marker is gone. Better indicators are blow-out pricing to move stock or a Yamaha spiff incentive to move old stock. So far, I haven’t seen any clearance pricing or promotions.

Yamaha’s mid- to upper-end keyboard products have a vulnerable supply dependency on Asahi Kasei Microdevices (AKM) DACs and ADCs. The AKM factory fire was worse than originally thought and production is still not back on-line. Renesas has offered to manufacture AKM devices. The Yamaha UK site has the disclaimer, “Due to the difficulty in procuring semiconductors and procuring parts worldwide, some of our product area deliveries may be delayed. Thank you for your understanding.”

AKM aren’t very public about their recovery and certainly haven’t released a public roadmap. A recent press release for VELVET SOUND DACs and ADCs mentions sampling (no pun intended) in January 2022 with “mass production scheduled for the third quarter of 2022.” Given that Toyota is a top AKM customer, who wins, Toyota or Yamaha? 😉

The AKM shortage inspires other conspiracy theories, too. Theory #1: Yamaha are using non-AKM DACs and ADCs in Montage — the analog/jack (AJK) board was redesigned or manufactured with inferior non-AKM devices. Theory #2: MODX is suspended in order to give preference to and ship the wider-margin Montage. Someone went so far as to ask about replacement DACs in Montage and got the usual non-response from Yamaha. (What did they expect?)

Some of the Yamaha boards use Yamaha proprietary ICs, e.g., SWL, SWX, or SSP2 processors, creating a different supply dependency. When production inventory is exhausted, Yamaha need to re-spin end product to use a newer part. The July 2016 MX refresh is one interesting example. I believe that was the case with the MX refresh.

I haven’t seen a new version of the heavy weight SWP70 tone generator. However, Yamaha have updated both the SWX and SSP lines:

  • The SWX08 is replaced by the SWX09.
  • The SSP3 — now appearing in Steinberg and Yamaha pro audio products — will likely replace the SSP2.

The SWX update would affect mid-range keyboards, notably the Yamaha Reface CP and YC. The SSP update would affect Montage, MODX, and Reface CS and DX.

Are new product spins in the works? Something is coming (eventually) given the CK61™/CK88™ and AN-X™ trademarks. Once again, only Yamaha really knows. 🙂

Copyright © 2022 Paul J. Drongowski

Yamaha YC series: Tonewheels

overall Speculation about future Yamaha product reminded me of some unfinished business — analyzing the design of the Yamaha YC stage organ series.

Design of the YC series put some of Yamaha’s best minds to work including Dr. Toshifumi Kunimoto. “Dr. K” and his team are well-known for Virtual Circuit Modeling (VCM) and physical modeling (VL). Before reading ahead, it’s worth reviewing my post summarizing YC61 Developers’ comments. The article has link to a (subtitled) interview with Dr. K, Takashi Mori and Akinobu Shibuya. One big take-away is how the developers took a system-wide approach to emulation the Hammond sound.

The YC61 Owner’s Manual cites six specific innovations:

  • Natural, organic harmonies when playing chords — thanks to a matrix circuit that connects the keyboard, tone wheels, and drawbars.
  • Percussion sound with presence — based on vacuum tube circuit analysis.
  • Key clicks and leakage sounds — based on electrical circuit analysis.
  • Natural sound distortion — simulating vintage vacuum tube pre-amplifiers.
  • Vibrato/Chorus effect — from scanner-based vibrato circuitry.
  • Changes in frequency characteristics and drive amount that responds dynamically to operation of the expression pedal.

These innovations are all in the realm of VCM and are needed to re-create the overall Hammond sound.

I assumed that Yamaha modeled the tonewheels, too. Now, I’m not so sure. I think the tonewheel waveforms are sampled and a modified form of AWM2 synthesis generates the basic, uneffected tonewheel signal (in digital form, of course). Here is my justification.

The interview and YC-series documentation

Yamaha are always honest about what they say even if they don’t say everything. Neither the developers’ interview or Yamaha documentation mention modeled tonewheels.

The YC specifications provide an important clue. Yamaha specify YC polyphony as:

VCM Organ + AWM2: 128 (Total of VCM Organ and AWM2), FM: 128

YC series keyboards have a single SWP70 tone generator (TG) integrated circuit (IC). Like the MODX design, the YC splits AWM2 and FM-X tone generation duties. It’s clear from the polyphony spec that the “VCM Organ” and AWM2 voices split resources, i.e., the AWM2 tone generation channels.

In AWM2 synthesis, each active voice element is assigned to an SWP70 tone generation channel. Genos and the upper-end PSR — also AWM2- and SWP70-based — assign a single drawbar waveform to an element (so-called “Organ Flutes” mode). Organ emulation on MODX (Montage) is similar.

Clearly, the AWM2 pipeline is involved in “VCM Organ” synthesis in some way.

Oh, the complexity!

Everyone is familiar with the 100,000 foot view of the Hammond tonewheel generator. A synchronous motor drives an assembly which spins the tonewheels. Each tonewheel has a pick-up that produces a fluctuating sine-like waveform. The waveforms pass through a key switching matrix and drawbars producing a mixed-down, composite organ tone. The tone is sent to the vibrato scanner, reverb, Leslie speaker, etc.

When it comes to modeling, the devil is in the details. I highly recommend reading one of the excellent Hammond tonewheel deep-dives on the Web:

When reading, please think about what is would take to write a mathematical model of this wonderful electro-mechanical contraption! It ain’t as trivial as summing up a bunch of sine waves. 🙂

The tonewheel assembly itself is closer to Charles Babbage’s mechanical Analytical Engine, than it is to an electronic home organ. The twelve (24, really) fundamental pitches are determined by integer gear ratios which approximate equal temperment. The tone wheels themselves have 2, 4, 8, 16, 32, 64, 128, 192 notches, producing subpitches at (near) octave intervals, derived from the fundamental scale pitches.

We know from our own experience that other aspects of the Hammond and Leslie organ system affect the final sound more than the basic tonewheel tones. If I were a developer, I would say, “Memory is cheap,” sample the tonewheels, move on and concentrate on the scanner, vacuum tube distortion, rotary speaker, etc.

Patents

Except, there is the issue of phase relationships when samples are played back. The Hammond tonewheel generator is a mechanical system with fixed relationships between tonewheel positions. This must be taken into account. Naive sample playback moves phase all over the place in an un-Hammond-like manner. Sample playback should be positionally aligned to preserve the fixed relationships present in a real, physical Hammond tonewheel generator.

Dr. K refers to “phase interference:”

“While collecting a range of different pitch waveforms, combining them, and including some non-linear additions, we also had to deal with phase interference between them. It turns out that this interference is not constant, and while balanced over the entire pitch of the instrument, the pitches do shift in subtle and inconsistent ways. … [T]his disordered yet harmonious behavior” is essential and necessary.

I believe that Yamaha have solved this problem by fetching and combining sampled tonewheel waveforms in a different way than everyday AWM2. Here are some patents to consider:

  • US Patent 10,388,290 B2 Multifunctional audio signal generation apparatus, August 20, 2019, Inventor: Taro Shirahama, Yamaha.
  • Japanese Patent 6360692 B2, Audio signal generation apparatus, July 4, 2018.

Yamaha could be aligning tonewheel waveforms when samples are fetched, thereby eliminating phase errors with respect to Hammond behavior. The sampled waveforms, of course, must also preserve the near-equal temperment of integer Hammond gear ratios. The end result is “Natural, organic harmonies when playing chords.”

I also want to draw attention to:

  • European patent application 20214572.8, Rotary speaker emulation — Device, musical instrument, method and program, December 16, 2020, Inventors: Yuji YAMADA and Takashi MORI, Yamaha.

This patent may summarizes Yamaha’s most recent work on rotary speaker emulation although the patent seems to be written as to obfuscate its intent. Yamaha has covered this territory before including:

Please note the inventors!

Copyright © 2022 Paul J. Drongowski

Guess again: AN-X ™

Various forums are buzzing about Yamaha’s latest trademark application: AN-Xâ„¢. The application was filed 9 June 2022 and must go through several steps before approval.

Like “CK61â„¢” and “CK88â„¢”, the primary class is “Musical Instruments” and the trademark registration is “intended to cover the categories of musical instruments, namely, electronic musical keyboards, electronic pianos, music synthesizers.”

Although Yamaha submitted a drawing (below), the “mark is presented in standard character format without claim to any particular font style, size or color.” So, keep your fingers offa those characters! 🙂

Yamaha trademark application pending

Update: Yamaha have filed for a stylized (figurative) trademark in the European Union. See image below.

Yamaha ANX trademark (European Union, filing: 018741845)

Of course, everyone is deconstructing the proposed mark. “AN” is known as Yamaha’s Analog Physical Modeling Synthesis as embodied in products like the AN200 Desktop Control Synthesizer. I’ve still got my AN200 and it’s a keeper. The AN200 consists of an SWX00B host processor and a PLG150-AN daugherboard. The PLG150-AN itself has a Renesas H8/300H 16-bit microcontroller and two Yamaha custom integrated circuits: VOP3 and MDSP. The custom circuits implement the VA synthesis and digital effects.

Yamaha AN200 analog physical modeling synthesis

It’s worth mentioning that VOP3 appears in the Yamaha FS1r — the inspiration for today’s FM-X. The FS1r does both 8-op FM and Formant Shaping Synthesis. Internally, two custom FS1-AB integrated circuits perform FM and formant shaping synthesis. Two VOP3 integrated circuits implement the filters (the first VOP3) and effects (the second VOP3).

Yep, I’ve mused about adding VA synthesis to Montage before and was skeptical about adding it to the existing SWP70-based Montage pipeline. I remain doubtful about adding VA synthesis to the existing Montage/MODX platform.

It’s worth noting, again, that Yamaha have never published nor described the actual data processing pipeline and signal paths within the SWP70 tone generator. I don’t have any formal relationship with Yamaha nor does Yamaha engineering ring me up regarding the internal details of their tone generation hardware. 😉 Do I have a right to change my mind in light of new information and analysis? Yes. Do I hope for a surprise from Yamaha? Yes.

The question is whether the SWP70 is capable of subsuming VOP3-like DSP functionality for VA synthesis. It’s how the YC series implements its Virtual Circuitry Modeling (VCM) organ engine. Clearly, if you can model drawbars, you can model an analog oscillator. Lest anyone forget, the Montage V3.0 upgrade (MODX V2.0) added the VCM Mini Filter, VCM Mini Booster and Wave Folder DSP effects.

An earlier version of this port stated the YC series uses modeled tonewheels. Further analysis makes me believe otherwise.

As to filtering, what is a hardware or software digital filter other than a mathematical model of an analog filter — even if its cold and heartless? What is a digital amplitude envelope other than a model of an analog envelope generator and VCA? Distinction due to implementation technology is nearly moot; it comes down to the characteristics of the particular models.

What does all this portend for the future? If I were Yamaha and I could add VA to the Montage (MODX) platform, I would sell it as an upgrade. Many people want VA on Montage and there is money to be made.

I’m willing to go a step further. Yamaha could and should offer a VCM organ upgrade, too. The SWP70 can support it. I’ll put money where my mouth is — I will pay real money for a YC upgrade on MODX (Montage). BTW, there’s no technical reason to not offer the FM-based YC organs on MODX/Montage already — it’s FM-X, after all.

Now, what are “CK61” and “CK88”? 🙂

Copyright © 2022 Paul J. Drongowski

Review: Arturia Keylab Essential

Oh, did I fail to mention, I added an Arturia Keylab Essential 49 to my iPad rig. I wanted a super light-weight MIDI controller with knobs, sliders, and a minimum of 49 keys with good action. The Keylab Essential 49 fits the bill at 6.6 pounds (3kg), eight pads, nine encoders and nine faders (sliders). The street price is attractive, too: $229 USD. I had a good experience with the Arturia Keystep 32 and decided to give the Keylab Essential a go.

I use the Keystep mainly for control voltage (CV) and gate with littleBits synth modules. Mini-keys are OK for experiments, but not for real playing. If your Keystep keys get dirty, here’s a guide to Keystep teardown and cleaning.

Why the Keylab Essential after Korg Microkey Air joy? I gave the Air’s mini-keys the old college try and then some. First off, most mini-key instruments are three octaves and too short for two-fisted playing. The Microkey Air 49 has four octaves, making it much easier to play most tunes without finger gymnastics. [If you’re a pianist, we’re not even having this conversation!] Although the Microkey Air has Bluetooth MIDI built-in and is battery-powered — genuine plusses — it doesn’t have knobs/sliders for VST control. And, well, it still has those mini-keys.

Arturia Keylab Essential 61

The Keylab Essential 49 is only three inches longer than the Microkey Air: 30.9″ versus 27.9″. Sure, the Keylab Essential is twice as deep, but them encoders and 30mm faders have to go somewhere! I will admit, the Keylab Essential is not a “lap board” like the Air; it needs a proper stand and power source.

The Keylab Essential key action is decent enough. Like the Keystep, it feels a bit soft. If you want a fast, crisp action, this isn’t the droid you’re looking for. Even though the Keylab Essentials are Arturia’s budget line, the encoders and faders feel sturdy with a reasonable amount of resistance.

I’m happy with the Keylab Essential and, yes, I’ll be keeping the Microkey Air, too. Here’s my short Keylab Essential wish list:

  • Battery power
  • Bluetooth MIDI
  • Expression input, not simply sustain (on/off)

Then again, the price would be higher and/or the build quality would be lower. No free lunch.

Analog Lab

I’m mainly interested in iPad (IK BX-3) and hardware (YC and Skulpt SE) control, not PC-based VSTs. However, Analog Lab is a fun leisure destination. Analog Lab and its integration with Keylab Essential are simply brilliant. Prepare to waste long hours jamming away with the best sounds of yester-year with lots of knob twisting and fader slamming.

Controlling Yamaha Reface YC

Yamaha Reface YC is one of my keeper keyboards. It’s been a handy companion at rehearsals and even a few church services. You’ve already heard my gripe about three octave mini-keyboards and Reface YC occupies that doghouse. No need to repeat.

Fortunately, Keylab Essential is almost made for Reface YC. [Dreamers, Yamaha has a full-size YC; forget a Reface re-issue.] Keylab Essential has a 5-pin MIDI OUT which links to the Reface YC dongle MIDI IN. Thank heavens for 5-pin MIDI.

Arturia provide their MIDI Control Center (MCC) app for configuration. The Keylab Essential has eight configuration slots: Analog Lab, DAW and six user slots. MCC communicates with Keylab Essential over USB. Fortunately, the 5-pin MIDI OUT operates concurrently with a USB connection back — no either/or.

Obviously, the faders map to the YC drawbars. Fortunately, the Keylab Essential faders have a drawbar mode, flipping low and high values. The Reface YC drawbars are controlled by MIDI continuous controller (CC) messages CC#102 to CC#110. It’s all right there in the Reface Data List PDF available on the Yamaha Web site.

Amazing how many people will ask a forum for such info. Please RTFM.

The rest of the front panel controls — waveform, rotary speed, vibrato/chorus, percussion, and effects — are under MIDI CC control, too. Keylab Essential has three switches (Part 1, Part 2, Live) which are mapped in the following way:

  • Vibrato/chorus select (CC#79)
  • Percussion on/off (CC#77)
  • Percussion harmonic (CC#112)

The switches are configured as toggles, so that the switch LEDs indicate individual switch state.

Rotary speed is interesting because Reface YC has four states: OFF, STOP, SLOW and FAST. By default, Reface YC modulation (CC#0) switches between SLOW and FAST. As an alternative to the wheel, I assigned OFF, STOP, SLOW and FAST to pads 5 through 8. It’s a shame that Keylab Essential doesn’t support radio buttons. If it did, one could make each pad in the group a toggle showing the current rotary speed state.

As I mentioned, Keylab Essential does not have an expression pedal input. Thus, I route a Yamaha FC-7 expression pedal to Reface YC directly. The Keylab Essential sustain input is still useful, however. I attach a sustain pedal and assign the sustain input to rotary speed (CC#19: SLOW and FAST). Momentary switch mode allows quick changes and speed bumps.

It’s worth noting here that rotary speed has four settings:

     CC#19       Value 
---------- -----
0 - OFF 0
1 - STOP 42
2 - SLOW 85
3 - FAST 127

Switching between SLOW and FAST means changing CC#19 between 85 and 127.

Making the rest of the story short, the remaining Reface YC parameters are assigned to the encoders. Waveform, vibrato/chorus depth and percussion length have five discrete settings each, i.e., they do not sweep continuously across 1 to 127. Expect to hear discrete changes (steps). The step values are: 0, 32, 64, 95, 127.

Vibrato/chorus does not have a Reface on/off switch. Vibrato or chorus are OFF when the vibrato/chorus depth is zero.

Here is a table which summarizes the control mappings:

--------------------------------  ---------------------------------------- 
Reface YC Arturia Essential 49
-------------------------------- ----------------------------------------
Rotary speed 19 0-127 Mod wheel, Pad 5-8 OFF, STOP, SLOW, FAST
Wave 80 0-127 Knob 1

16' 102 0-127 Slider 1
5 1/3' 103 0-127 Slider 2
8' 104 0-127 Slider 3
4' 105 0-127 Slider 4
2 2/3' 106 0-127 Slider 5
2' 107 0-127 Slider 6
1 3/5' 108 0-127 Slider 7
1 1/3' 109 0-127 Slider 8
1' 110 0-127 Slider Master

V/C type 79 0-63, 64-127 Switch Part 1
V/C depth 77 0-127 Knob 2
Perc on/off 111 0-63, 64-127 Switch Part 2
Perc harm 112 0-63, 64-127 Switch Part 3
Perc length 113 0-127 Knob 3

Effect Dist 18 0-127 Knob 7
Effect Reverb 91 0-127 Knob 8
Volume 7 0-127 Knob 9

Oh, yeah, don’t forget volume! With the Keylab Essential at hand, you’ll probably have the Reface YC out of reach at the end of its MIDI tether.

I intend to get into good trouble with the Arturia Keylab Essential. Expect future experiments with iPad, IK Multimedia BX-3 and Modal Skulpt SE.

Copyright © 2022 Paul J. Drongowski

New toys: Roland E-X50 and Moog Mavis

While Sud Claviers are teasing the release of a new arranger keyboard, Roland — of all manufacturers — have announced a new entry-level ($400) arranger: the Roland E-X50 arranger keyboard. And a new synth kit from Moog.

Arranger forums are anticipating a new Korg flagship arranger, the Korg Pa5x, on 30 June 2022. Sud Claviers France have taken the lead for European introductions before, as arranger keyboards are more popular in Europe and Asia than North America. Various Korg (and Yamaha!) forums have leaked images and video — a lot of it blurry. Fans are usually good at spotting fakes, but this time it looks to be real.

You’ll pay a high price for the Pa5x jewelry. The Roland E-X50 is for punters having an estimated $400 USD price. (The Pa5x will cost 10x that amount.)

Roland E-X50 arranger keyboard

The E-X50 has a sleek, professional, squarish look to it, weighing 9.6kg (21.3 pounds). The new arranger kits out with 256 polyphony, 433 regular tones plus 256 GM2 tones and a total of 18 drum sets. Effects include equalization, chorus, reverb and delay. The stereo audio system is 10 Watts per side through a 12cm speaker and 3cm tweeter. With a 30 Watt power draw, it’s an AC adaptor; no battery power.

Bluetooth is built-in. The E-X50 has fixed formet LCD display which is typical for entry-level keyboards.

Auto-accompaniment and registration memory are on par with Yamaha, Casio, and Korg. Roland have not broken any new ground, here. The most novel feature is AUDIO PAD playback. The Scale Tune buttons are linked to WAV (or MP3) files on a USB drive. Striking one of the buttons plays back the associated audio file (one shot or loop). Unlike Yamaha arrangers which are notoriously picky about audio file format (16-bit, 44kHz stereo), the E-X50 supports a broad range of bit rates and sampling frequencies. (You’re still stuck with 16-bit samples, tho’.)

The E-X50 is supported by a free E-X Style Converter application (Windows and Macintosh), which converts a MIDI file to a style file compatible with the Roland E-X series.

Bottom line, the E-X50 offers an alternative to similar units from Korg and Yamaha. Every vendor has its own sound and this Roland may float your boat more so than Korg or Yamaha.

Moog Mavis is a new build-it-yourself monophonic analog synth kit from Moog. I rather like the looks of Mavis right off the top. The front panel screams “Moog”. It has a mess o’patch points (24-point CV controllable) on the left hand side of the front panel. The module is 44HP in case you want to rack it up. The Mavis form factor is compatible with earlier units like the DFAM.

Moog Mavis monophonic analog synth module

Mavis boasts the Moog “legendary oscillator and filter circuits,” adding a diode wave folder. The filter spec is -24 dB Moog Low Pass Ladder filter. Mavis has a built-in courtesy keyboard. Serious folk will be driving Mavis from external, 1 V/oct gear.

“Build-it-yourself” is more like assemble it yourself as the mainboard is fully wave soldered, etc. No soldering required.

Mavis is $349 USD. That seems a little price-y, but you get an entire monophonic synth signal chain. Near as I can tell, Mavis avoids the shortcomings of the Werkstatt-01. I almost bit on a Werkstatt-01 until I realized its interfacing limitations. And guess what? Mavis is already in stock at a few on-line retailers! Nice work, Moog.

Copyright © 2022 Paul J. Drongowski

NAMM 2022: Your guess is as good as mine

Update: If you’re looking for information about the new Yamaha CK61 and CK88, see my specification and snap review articles.

With NAMM 2022 coming up (June 3-5), it’s time for rumors. 🙂

Yamaha filed for two new trademarks in June 2021. The trademarks are words in stylized form. The scope is “Musical instruments, namely, electronic musical keyboards, electronic organs, electronic music synthesizers, cases for musical instruments”.

Trademarks applied for and published soliciting opposition

The main marks are CK61â„¢ and CK88â„¢. The marks:

  • CK SIXTY ONE; CK SIX ONE; CK 61
  • CK EIGHTY EIGHT; CK EIGHT EIGHT; CK 88

are alternative forms.

The marks have been published, soliciting opposition as of 29 March 2022. Seems reasonable that a manufacturer would want the product identifier approved before making a zillion units with the name stamped on.

Let the speculation begin! Clearly, 61-key and 88-key keyboards are involved. Duh! “C” for “control”? Somewhat reminiscent of the old control synth product range? No 76 model?

The font is similar to the Yamaha Reface series marks. I’d love to see a merged all-in-one Reface-like keyboard with full-size keys. The MX series is getting a little long-in-the-tooth, so its replacement might be another possibility? Hope the price is reasonable…

When Reface YC and CP grew up, Yamaha kept the stylized names and font in the names of the YC and CP stage keyboards. Maybe a new stage keyboard in the Yamaha synth product group? A combined FM and virtual analog keyboard that doesn’t overlap the YC and CP models?

Copyright © 2022 Paul J. Drongowski

NAMM 2020: Casio sneak peek

Casio get arty!

Casio’s pre-NAMM 2022 press release mentions a few art projects to be released and shown during NAMM 2022, June 3-5.

Music Tapestry creates pictures from musical performances — a modern day color organ, for you old-timers like me. Music Tapestry is triggered by musical pitches and keyboard touch. Casio Sound Developer Hiroko Okuda — who helped developed Music Tapestry — will demonstrate it at the Casio booth.

Black and white example from U.S. Patent 10,803,844

Casio’s U.S. Patent 10,803,844 (October 2020) discloses a process to visualize musical performance. Hiroko Okuda is one of the inventors.

Casio CT-S1 FH limited edition — Britto Flowers & Hearts

If you think the Casio CT-S1 is too plain, try the “Flowers & Hearts” fabric by Brazilian pop artist Romero Britto. Casio will be selling a Limited Edition CT-S1 FH model (limited to 200 units at $500 USD).

Check out more of Britto’s work on-line!

Of course, Casio will be demonstrating their latest products including the Casio CT-S1000V with vocal synthesis. I’ll bet that the CT-S500 will be there, too. 🙂

Copyright © 2022 Paul J. Drongowski

CT-S1000V: Tremolo EP

I spent a little time with the Casio CT-S1000V this morning, trying to dial in a mellow Rhodes EP with tremolo. The Stage E.Piano tone is nice, but has auto pan instead of tremolo. I like tremolo since I usually go MONO into the live sound system.

Studying presets is always informative. The DSP tones, by default, have an Active DSP chain pre-configured. The Active DSP chain for Stage E.Piano is:

Amp Cab          -> Auto Pan         -> Auto Pan 
---------------- ---------------- ----------------
Type: RD-MK2-PRE Rate: 68 Rate: 62
Vari: 1 Depth: 80 Depth: 80
Wet Level: 127 Waveform: Sine Waveform: Sine
Dry Level: 0 Manual: 0 Manual: 0
Bypass: OFF Wet Level: 70 Wet Level: 70
Dry Level: 100 Dry Level: 118
Bypass: OFF Bypass: OFF

Two Auto Pan stages? Well, let’s find this chain in the list of DSP combinations. What the? The default “Tone” DSP chain doesn’t appear in the DSP List!

The Trem 60’s EP has tremolo, so let’s take a look at its default Active DSP chain:

Amp Cab          -> Tremolo          -> Tremolo 
---------------- ---------------- ----------------
Type: WR-200-PRE Rate: 92 Rate: 92
Vari: 3 Depth: 64 Depth: 64
Wet Level: 112 Waveform: Sine Waveform: Sine
Dry Level: 0 Wet Level: 100 Wet Level: 100
Bypass: OFF Dry Level: 100 Dry Level: 100
Bypass: OFF Bypass: OFF

Two Tremolo stages and once again, such a DSP combination is not listed User Guide DSP List!

Well, DSP combi number 33, Drive Amp 2, is close to what we need. Starting with the Stage E.Piano tone, I changed it’s Active DSP programming to:

Drive          -> Tone Control   -> Amp Cab          -> Tremolo 
-------------- -------------- ---------------- ----------------
Type: Crunch3 Low Freq: 400 Type: RD-MK2-PRE Rate: 82
Gain: 70 Low Gain: +3 Vari: 1 Depth: 120
Out Level: 70 Mid Freq: 2.5k Wet Level: 100 Waveform: Sine
Wet Level: 127 Mid Gain: +5 Dry Level: 0 Wet Level: 70
Dry Level: 0 High Freq : 5k Bypass: OFF Dry Level: 60
Bypass: ON High Gain: 0 Bypass: OFF
In Level: 127
Wet Level: 68
Dry Level: 0
Bypass: OFF

The Bypass parameter comes to the rescue. I didn’t like any of the Clean drive types, so I disabled (bypassed) the drive stage.

The Tone Control boosts the MIDs adding warmth. The Amp Cab model is a Rhodes Mk2 preamp — the same model in the stock Stage E.Piano tone. These Tremolo settings just sound right to me. Of course, you’re welcome to play with any of these settings.

I uploaded updated registration banks, including the Stage E.Piano tremolo. Please see the CT-S free registrations page for a link to the ZIP file.

Have fun!

Copyright © 2022 Paul J. Drongowski

Casio CT-S1000V: Free registration banks

I hope today’s post will help liturgical musicians who want to play the Casio CT-S1000V and CT-S500 at church services. I invested a fair amount of effort building patches and registrations which fit contemporary and traditional church music. The sounds would also be compatible with soft pop and gospel-tinged genres, too.

I’ve gig-tested there sounds, having played them at services. So, if you would like to try them yourself, please download the ZIP file. The ZIP contains six CT-S registration files:

  1. RegBank01.RBK: Woodwinds
  2. RegBank02.RBK: Strings
  3. RegBank03.RBK: Horns / Brass
  4. RegBank04.RBK: Drawbar organs
  5. RegBank05.RBK: Pipe organs
  6. RegBank06.RBK: Miscellaneous

The sixth bank is a work in progress. The first five banks cover most of my needs, but there are always a few miscellaneous sounds that pop up.

Each CT-S1000V and CT-S500 registration has four slots (patches). The following table summarizes the registration and patch layout.

       1              2              3              4 
-------------- -------------- -------------- --------------
Bank 1 Horn+Wood Flute+Cla Wood Sect ChamberWinds
Bank 2 MellowStrings StereoStrings SoloViolin ChamberStrings
Bank 3 FrenchHorns NobleHorns HighSchool Tp + Tb
Bank 4 MellowGospel SoftGospel BrightChurch Simmering
Bank 5 Pipe Organ 3 Chapel Organ Organ Flute Bandoneon
Bank 6 SoftPad VoiceEnsemble StageE.Piano StageE.Piano Trem

I usually pre-select a bank and patch before each musical piece. Then I switch to a different patch within the same bank in order to add a different color. I wish it was a little easier to change registration bank on the fly. Maybe I’ll get better with practice.

Patch details

The CT-S patches are based on combinations which I used on old Roland JV- and XV- series gear. The following tables show the CT-S tones in each patch and the level for each tone. You’re welcome to tweak the levels using the BALANCE menu.

Woodwinds      Upper1            Upper2             Lower           
---------------- ----------------- ----------------
Horn+Wood English Horn 100 Fr.Horn Sect 110 Mellow Str.2 127
Flute+Cla Flute 1 100 VeloClarinet 100 Mellow Str.2 127
Wood Sect Flute & Oboe 100 VeloClarinet 100 Mellow Str.2 127
ChamberWinds Flute & Oboe 95 VeloSopranoSax 85 Mellow Str.2 127

Strings Upper1 Upper2 Lower
---------------- ----------------- ----------------
MellowStrings SlowStreoStr 100 Warm Pad 120
StereoStrings SlowStreoStr 120
SoloViolin Slow Violin 75 Mellow Str.2 90
ChamberStrings Chamber 100

Brass Upper1 Upper2 Lower
---------------- ----------------- ----------------
FrenchHorns French Horn 100 Fr.Horn Sect 80
NobleHorns Fr.Horn Sect 100 Flugelhorn 80
HighSchool Clarinet 100 Glockenspiel 80 French Horn 80
Tp + Tb Flugelhorn 100 Trombone 80 Tuba 80

B-3 Organ Upper1 Upper2 Lower
---------------- ----------------- ----------------
MellowGospel GospelOrgan2 127 Organ Bass 100
SoftGospel Rock Organ 2 127 Organ Bass 110
BrightChurch Elec.Organ 1 100 Organ Bass 127
Simmering Elec.Organ 6 110 Organ Bass 127

Pipe Organ Upper1 Upper2 Lower
---------------- ----------------- ----------------
Pipe Organ 3 Pipe Organ 3 100
Chapel Organ Chapel Organ 100
Organ Flute Organ Flute 120
Bandoneon Bandoneon 120

Pads Upper1 Upper2 Lower
---------------- ----------------- ----------------
SoftPad Soft Pad 127
VoiceEnsemble VoiceEnsembl 120

I dialed down the reverb in all cases and settled on the ROOM2 reverb type. These patches are intended for live playing in a reverberant church hall, so additional reverb is unnecessary. You might find the pipe organ patches to be waaay dry when compared with the factory tones. I removed the initial reflections and delay which create the impression of a large space — totally unwanted in a live church.

I added 3-band EQ (ACTIVE DSP) to the woodwind patches to add warmth and to reduce harshness. Feel free to tweak away!

For string patches, Knob 1 and 2 are assigned to attack time and release time, respectively. I had to decrease the release time to reduce a simulated reverb tail. Knob 3 is usually modulation.

For drawbar organ patches, Knob 1 is rotary speaker speed, Knob 2 is scanner vibrato/chorus and Knob 3 is rotary speaker brake. Drive Rotary (ACTIVE DSP) is enabled with ACTIVE DSP HOLD. Here are the Drive Rotary DSP parameters:

                                       BrightChurch 
Param MellowGospel SoftGospel Simmering
------- ------------ ---------- ------------
Type 2 2 2
OD Gain 30 42 42
OD Level 30 42 42
Speed SLOW SLOW SLOW
Brake ROTATE ROTATE ROTATE
FallAcel 35 35 20
RiseAcel 40 40 35
SlowRate 45 45 65
FastRate 95 95 100
Vib/Cho OFF OFF OFF
WetLevel 100 110 110
DryLevel 0 0 0
Bypass OFF OFF OFF

I programmed Organ Bass in the left hand because I didn’t care for the sound of the rotary speaker on notes below middle C (or so). Drive Rotary does not have a parameter for the horn/rotor balance — maybe that would help.

I hope these patches help you to get started with your own registrations!

Copyright © 2022 Paul J. Drongowski

Casio CT-S1000V: Master EQ

Beware, this post is going to bury you in numbers. 🙂

I’ve been investigating master equalization in the Casio CT-S1000V. The CT-S500 has the same master EQ, so everything discussed here applies to the CT-S500, too.

The CT-S1000V master EQ is a four band, semi-parameteric equalizer. The four bands are: LOW, MID1, MID2, and HIGH. It’s possible to create and store a USER setting. The edit page let’s you set the center frequency and gain for each of the four bands. You cannot set the band quality factor, Q, which determines the bandwidth spread.

The CT-S1000V provides ten master EQ presets with suggestive names. Casio, unfortunately, do not publish the center frequencies and gains for the presets. Listening to each preset, one thinks “Yeah, that’s bright,” or whatever. Details are missing in action, however.

One can assign LOW, MID1, MID2, and HIGH gain levels to a knob. Thanks to the knob edit function, it’s possible to suss out the gain level for each band within a preset. After much button pushing and knob twiddling, here are the gain levels (dB) for each preset:

                LOW  MID1  MID2  HIGH 
--- ---- ---- ----
Standard 0 0 0 0
Loudness +3 +6 +1 +7
Treble + 0 0 +4 +6
Bass + +3 +4 0 0
Mellow -3 0 0 -8
Bright -4 0 +6 +4
Rock +3 +2 -6 +6
Jazz +3 0 +6 0
Dance +3 +4 +2 +8
Classic -2 +6 +2 0

As to the band frequencies, we turn to the published table of master EQ frequencies:

    LOW frequency range      50Hz to 800Hz 
MID1 frequency range 100Hz to 8.0kHz
MID2 frequency range 100Hz to 8.0kHz
HIGH frequency range 2.0kHz to 16.0kHz

That’s enough to get into the right ballpark.

Yamaha XG Multi EQ

Never content, I worked out a table for Yamaha XG Multi EQ. Multi EQ is an optional master EQ in the Yamaha XG effects chain. Multi EQ is fully parameteric and has five bands: LOW, LOW-MID, MID, HIGH-MID, and HIGH. The LOW and HIGH bands support a peak mode, but are usually configured for shelving.

Multi EQ has five presets: Flat, Jazz, Pops, Rock and Concert (AKA “Classic”).

           Flat          Jazz            Pops          Rock          Concert 
------------- ------------- ------------- ------------- -------------
Freq Q dB Freq Q dB Freq Q dB Freq Q dB Freq Q dB
------------- ------------- ------------- ------------- -------------
Low 80Hz 0 50Hz -6 125Hz +4 125Hz +7 80Hz +3
L-mid 500Hz 0.7 0 125Hz 0.3 +2 315Hz 2.0 -4 200Hz 0.7 +4 315Hz 0.7 +4
Mid 1.0kHz 0.7 0 900Hz 0.3 +4 1.0kHz 0.7 +3 1.2kHz 0.5 -4 1.0kHz 0.5 0
H-mid 4.0kHz 0.7 0 3.2kHz 0.5 -4 2.0kHz 2.0 -4 2.2kHz 1.0 +4 6.3kHz 0.7 +2
High 8.0kHz 0 6.3kHz -6 5.0kHz +6 6.3kHz +2 8.0kHz -3

None of the Q’s are high, so the peaks/curves are rather gentle. [I wish there was an easy way to plot the curves for each preset.]

Of course, you can plug these settings into the CT-S1000V and merrily tweak away.

Yamaha Genos Master EQ

The Yamaha Genosâ„¢ Master EQ is an eight band, parametric equalizer. The Low and High bands are shelving.

Yamaha Genos provides five presets: Flat, Mellow, Bright, Loudness and Powerful:

           Flat          Mellow         Bright        Loudness       Powerful 
------------- ------------- ------------- ------------- -------------
Freq Q dB Freq Q dB Freq Q dB Freq Q dB Freq Q dB
------------- ------------- ------------- ------------- -------------
Low 80Hz 0 80Hz 0 100Hz 0 100Hz +1 140Hz +3
1 250Hz 0.7 0 250Hz 0.7 0 250Hz 0.7 -1 250Hz 1.2 +1 315Hz 0.5 +2
2 500Hz 0.7 0 500Hz 0.7 0 500Hz 0.7 -1 450Hz 1.0 -2 560Hz 1.5 +2
3 630Hz 0.7 0 800Hz 1.0 +1 800Hz 0.7 -2 630Hz 0.5 -1 800Hz 0.5 +2
4 800Hz 0.7 0 1.8kHz 0.5 -1 1.0kHz 0.7 0 1.0kHz 1.3 0 1.6kHz 1.2 +1
5 1.0kHz 0.7 0 3.6kHz 1.0 -2 1.6kHz 1.7 +2 3.6kHz 1.0 +1 3.6kHz 1.6 +1
6 4.0kHz 0.7 0 6.3kHz 1.3 -2 4.0kHz 0.7 +1 6.3kHz 0.8 +1 5.6kHz 1.4 +2
High 8.0kHz 0 9.0kHz -1 7.0kHz +3 8.0kHz +2 10.0kHz +2

The settings match the names. Mellow knocks down the highs. Bright cuts the lows and boosts the highs. Loudness is a bathtub boosting both lows and highs. Powerful kicks all bands up a notch.

If I find a way to discover the CT-S1000V band frequencies, I will update its table. In the meantime, have fun!

Copyright © 2022 Paul J. Drongowski