MOX performance to PSR style (part 3)

In parts one and two, I described a way to capture Yamaha MOX performances into a Standard MIDI File (SMF) and how to translate the SMF to a PSR/Tyros style. Part three discusses Mega Voices and how to program MIDI data for a Mega Voice part such that the special articulations and effects (FX) play back correctly.

A Yamaha Mega Voice is a synthesizer or arranger workstation voice that has several sonic components. Take the MOX “Mega Finger+Slap” voice as an example. It has five components; each component is assigned to a MOX tone generator element:

Element Waveform Lower Upper Velocity
1 Finger Med C-2 B5 1-60
2 Finger Hard C-2 B5 61-80
3 Finger Dead C-2 B5 81-120
4 Thumb/Pull Hard C-2 B5 121-127
5 Electric Bass FX C6 G8 1-127
Table: Mega Finger+Slap voice elements

These components do not sound all at once! The MIDI note number and velocity trigger just one of the elements. (In this case, all components/conditions are exclusive.) One the first four elements sound when the MIDI note is between C-2 (MIDI note number 0) and B5 (MIDI note number 95). The MIDI note velocity further determines which of those four elements is triggered. The fifth element sounds when the MIDI note number is between C6 (note number 96, inclusive) and G8 with any non-zero velocity.

As Phil Clendeninn (Yamaha) points out, Mega Voices are intended to sweeten pre-programmed patterns and styles and are not intended for live keyboard playing. Human beings just cannot play notes with enough precision to reliably and accurately hit the velocity ranges. The bass voice is relatively simple; A Mega Voice guitar has as many as eight velocity zones!

The MOX also has “regular” voices that are similar to Mega Voice. The “Finger PBs AF1” voice is one example. This voice has four components:

Element Waveform Lower Upper Velocity
1 P-Bass Rndwound Med C-2 B4 1-90
2 P-Bass Rndwound Hard C-2 B4 91-127
3 Electric Bass FX C5 G8 1-127
4 Finger Harmonics C-2 B4 1-127
Table: Finger PBs AF1 voice elements

Notice that element 4 overlaps with elements 1 and 2. Element 4 sounds when the assignable function 1 (AF1) button is held. On the MOX, you can deep dive voices through the front panel and find out what makes them tick (or tock). This level of voice programming is hidden on PSR/Tyros arranger workstations. Fortunately, Yamaha have published the note and velocity ranges for workstation Mega Voices. (See the data list PDF.)

MOX and arranger workstation Mega Voices are mostly compatible. However, Yamaha do not advertise or guarantee compatibility. The MOX Electric Bass FX wave contains many more effects than a typical single arranger Mega Voice for example. You’ll need to use your ears to make sure that MIDI data for a MOX Mega Voice sound correctly with an arranger Mega Voice.

Voices such as Finger PBs AF1 resemble and behave like a Mega Voice, but do not follow typical Mega Voice conventions, such as reserving notes above C6 for FX like slides, scrapes, fret noises, etc. Regular notes with this patch sound one octave lower than a Mega Voice bass. You’ll need to transpose the incoming notes depending upon the target arranger voice. Also, if you use an arranger Mega Voice as the target, you must scale numerically the note velocities to match the Mega Voice programming. This translation requires attention to detail and a good ear!

Here’s another crazy problem although it is not Mega Voice related. In two cases, all of the notes in the MOX bass track had velocity equal to one! Coincidentally, a MOX synth bass voice was involved in both cases. I changed the note velocities to something more reasonable (and randomized) using SONAR.

As if all of this is not enough complexity, there is one further wrinkle — note transposition. The arranger transposes the MIDI notes for a part according to the transposition rule and table for the style part (and section). Mega Voice tracks, however, contain both regular notes (below C6) and FX notes (C6 and above). If the transposition rule and table transpose the regular notes, the FX notes get transposed, too, when both kinds of notes are in the same track. When the transposed notes are played back, the FX notes may get mapped to the wrong effect or to high pitched regular notes that sound totally out of place (i.e., sonic clams).

There are three solutions to this problem:

  1. Delete the FX notes from the MIDI data for the part.
  2. Split the MIDI data into two parts: regular notes and FX notes.
  3. Do what Yamaha does.

We’ll take a look at solutions 1 and 2 in a moment. Normal notes and FX notes appear together in the same Mega Voice track in a Yamaha factory style. (Crack one open with a DAW!) So, Yamaha must have an internal way to treat normal notes and effect notes differently. There is some evidence that the note transposition rules and tables can handle Mega Voice. However, this approach is not documented and it is not exposed through the keyboard (i.e., the PARAMETER tab in Style Creator) or a Yamaha-endorsed software tool. Thus, solution number 3 is not feasible for us.

Solution number 1 — delete the FX notes — is straightforward. The downside is that you lose the nuances that make a part exciting. Let’s face it, bass slides are cool and kick up the energy. If you don’t have the time, energy, knowledge or inclination, this is the way to go. Further, you may not have an unused style part available to split off the FX notes into a separate track. (The spirit is willing, but the flesh is weak.) In the case of MOX pseudo-Mega voices, you may still need to scale note velocities or transpose the incoming notes up (or down) one octave to match the target voice. That’s enough hassle for some folks.

Solution number 2 splits the MIDI data into two separate style parts (tracks). One of these tracks holds the regular notes and the other track holds the FX notes. SONAR has a track clone operation which makes separation a breeze. After cloning, both tracks have the same MIDI data and the same Mega Voice patch. You do need to change the MIDI channel number of the clone to the channel of an unused style part. Delete the FX notes (C6 and above) from the BASS part (channel 11). Delete the regular notes (below C6) from the clone. Style Fixer generates the correct transposition rule and table for the BASS part. You must change the transposition rule and table for the cloned part using CASM Editor. Set the rule and table of the clone to “FIXED” and “BYPASS”, respectively. Remember that the rule/table needs to be set for all sections.

Why “FIXED” and “BYPASS”? These are the settings that you would use with a drum track. Effectively, the guitar/bass effects are a kind of percussion instrument that have their own rhythm. Therefore, you want to use the note numbers as they are (FIXED) and you want to inhibit (BYPASS) note transposition.

I recommend making the split early in the style development process because you will need to make this split with a DAW. Once you’ve made the split, I strongly suggest trying the style on the PSR/Tyros right away. Take note of the sections that use FX notes. Listen carefully. Play CMaj7 which does not require transposition (assuming that the transposition root/chord is CMaj7). Can you hear the right effects in the right places? Now play a G7 chord. Do you still hear the correct effects in the right places? If the effects disappear, then you need to check the FX notes and the CASM transposition rule/table information. You can tweak the rule/table for each section on the PARAMETER tab in Style Creator when a fast repair is needed.

If you do change a style on the keyboard, remember to save the style. The keyboard may change the style format to “SFF GE” (also known as “SFF2”). CASM Editor does not currently handle SFF2. This limitation can cramp your working style [pun intended] since a style edited on the keyboard cannot be opened by CASM Editor.

Smooth It Over

Here’s a Yamaha PSR-S950 style for funky jazzers — SmoothItOver.

As some of you know, many of the Motif/MOX arpeggios are based on what once were PSR/Tyros arranger keyboard styles. SmoothItOver is a little payback going the other way.

The MOX has about a dozen or so jazzy/funky Performances that are fun to jam to. One of my favorites is called “Smooth It Over.” A MOX/Motif Performance is a four instrument mini-mix where each instrument can be driven by a different arpeggio (musical phrase). Arpeggios are triggered by hitting one or more notes on the keyboard. Many of the arpeggios respond to and follow chords. A musician can lay down a song or groove by switching through groups of arpeggios and playing along.

The SmoothItOver performance on the MOX splits the keyboard into a lower and an upper part. (Sound familiar?) The lower part of the keyboard triggers drum and bass arpeggios as well as directly sounding the notes played, using a mellow electric piano voice. The upper part of the keyboard is for melody and is configured with a growl tenor sax. The drum and bass arpeggios are taken from the 70sDiscoFunk and GospelFunk styles.

The PSR/Tyros SmoothItOver style rips off, errr, builds on the equivalent sections from the 70sDiscoFunk and GospelFunk styles. I added OTS buttons with the FunkGtr 16Bt3 Multi Pad bank. Be sure to throw in the Multi Pad guitars when playing. (These Multi Pads follow the left hand chords.) It really kicks the PSR/Tyros style up a notch over the MOX version. The ability to switch melody voices on-the-fly through OTS is another advantage over the MOX.

The INTROs and ENDINGs are little lame since this style is built for jamming and practice, not covers. Try it with a minor blues (e.g., Dm7, Gm7, Am7) and switch between sections frequently to vary the groove. Drop a little guitar via the Multi Pad buttons. Have fun!

Don’t let anyone kick sand in your face at the beach just because you play “an arranger.”

BTW, I know someone will ask, “Why not transfer phrase data, etc. from the MOX to the PSR?” Two good reasons:

  • The MOX/Motif instruments are programmed much differently than similar PSR/Tyros instruments. The bass in Smooth It Over, for example, lays out the sound elements in different MIDI velocity and note ranges.
  • The note transposition rules and tables are hidden on the MOX.

It’s much easier to start out with the native style data on the PSR than to re-map the MOX phrase data to PSR instruments and recreate all of the note transposition programming.

Here’s an arpeggio-to-style section correspondence table:

    Type  ARP#  Style section
    ----  ----  ---------------------
    Drum  ARP1  MB_Gospel Funk
    Drum  ARP2  MA_Gospel Funk
    Drum  ARP3  MB_Gospel Funk
    Drum  ARP4  FA_Gospel Funk
    Drum  ARP5  FB_Gospel Funk
    Drum  ARP6  BA_Gospel Funk

    Bass  ARP1  FA_70sDiscoFunk _XS
    Bass  ARP2  FB_70sDiscoFunk _XS
    Bass  ARP3  MB_Gospel Funk _XS
    Bass  ARP4  MB_Gospel Funk _XS
    Bass  ARP5  FA_70sDiscoFunk _XS
    Bass  ARP6  BA_Gospel Funk

Transferring QY70 style to PSR

Some of us are trying to mine our old beat boxes (like the Yamaha QY70) for styles and phrases. I tried transferring a QY70 “style” to an S950.

“8Detroit” is an 8-beat QY70 style. A QY70 style has only six sections: Main A, Main B, Fill In AB, Fill In BA, Intro, Ending. There is no break section. The fill-ins are called “AB” and “BA” because they are intended to be transitions from Main A to Main B and from Main B to Main A.

I determined the section lengths through the QY70 phrase editor. Here are the QY70 section lengths:

     Section     Length
     ----------  ------
     Main A      2 bars
     Main B      4 bars
     Intro       2 bars
     Fill In AB  1 bar
     Fill In BA  1 bar
     Ending      6 bars

Here is the process that I used to create a PSR compatible style called “8DetroitStyle.sty”.

1. Create a QY70 song in the QY pattern track. Use Cmaj7 throughout. The song has the following structure/sections:

     Measure   SMF   Section     MIDI Marker
     -------  -----  -------     -----------
       1:2     2:3   Main A      Main A
       3:6     4:7   Main B      Main B
       7:8     8:9   Intro       Intro A
        9      10    Fill In AB  Fill In AA
       10      11    Fill In BA  Fill In BB
      11:16   12:17  Ending      Ending A

The first column is the section location in the pattern track. The second column is the section location in the generated SMF file.

2. Copy the QY70 song to an empty song. Use the QY70 “Expand Backing” job to expand the pattern track to MIDI events in tracks 9-16.

3. Use the QY70 Data Filer program to transfer and translate the QY70 song to an SMF file on a PC. Enable the option to insert XG initialization data at the beginning of the SMF file.

4. Open the SMF file in Sonar. Insert MIDI markers at the locations specified above. Save the SMF file as MIDI type 0.

5. Rename the MIDI file with the “.STY” extension.

6. Use Jorgen Sorensen’s Style Fixer program to check the file and to insert a default CASM into the MIDI file.

7. Transfer the style file to a USB drive and test the file on the PSR.