New Yamaha patents

Raining like crazy today, so it’s a good chance to look for new patents and patent applications.

First, here are a few new technical patents assigned to Yamaha. US Patent 9,536,508 titled “Accompaniment data generating apparatus,” awarded on January 3, 2017, describes accompaniment generation using a combination of MIDI and audio waveforms. The accompaniment generator follows chord changes, etc. just like today’s arrangers except that it also plays back melodic (pitched) audio phrases as well as MIDI. This is very likely the nexus of the next generation of Yamaha arrangers (flagship “GENOS“).

US Patent 9,514,728 titled “Musical performance apparatus that emits musical performance tones and control tones for controlling an apparatus,” awarded December 6, 2016, describes a system for near ultrasonic communication between a tablet and a keyboard. Software on the tablet controls tone generation on the keyboard, allowing an app to play back a musical performance (e.g., MIDI over near ultra sonic sound). I suspect that some future Yamaha patent will use this technology for wireless tablet to keyboard communication in place of Bluetooth or WiFi.

The third patent, number 9,489,938 is titled “Sound synthesis method and sound synthesis apparatus” and was awarded on November 8, 2016. The patent abstract says it best:

A sound synthesis apparatus connected to a display device, includes a processor configured to: display a lyric on a screen of the display device; input a pitch based on an operation of a user, after the lyric has been displayed on the screen; and output a piece of waveform data representing a singing sound of the displayed lyric based on the inputted pitch.

Yamaha have a stellar technology base in VOCALOID. I believe they are working toward a real-time system to sing lyrics. This would be a real breakthrough especially for pitch-challenged vocalists like me!

Finally, Yamaha was awarded several design patents covering the external industrial design of synth and arranger keyboards:

    D772,974   PSR-S670   November 29, 2016
    D776,189   Montage    January 10, 2017
    D778,347   YPT-255    February 7, 2017
    D778,346   Reface YC  February 7, 2017
    D778,345   Reface CP  February 7, 2017
    D778,344   Reface DX  February 7, 2017
    D778,343   Reface CS  February 7, 2017
    D778,342   ????       February 7, 2017

The final design patent, D778,342, is perplexing. I haven’t been able to associate it with a product in the North American market. A future product perhaps? It shows a 26-key keyboard with a four way, cursor-like pad. The keyboard design is E-to-F! I/O is on the left side panel.

Tip-toe through the tech

Last year ’bout this time, we were all holding our collective breath awaiting the new Yamaha Montage. There are two products which I expect to see from Yamaha sometime in the next one to two years:

  1. The successor to the mid-range MOXF synthesizer, and
  2. The successor to the top-of-the-line (TOTL) Tyros arranger workstation.

NAMM 2017 seems a little too soon for both products. In the case of the MOXF successor, Yamaha conducted marketing interviews during the summer of 2015. I would guess that MOXF sales are still pretty good and no new products from the usual suspects (Korg, Roland) are visible on the horizon. The Krome and FA could both use an update themselves. Not much market pressure here at the moment. (Korg’s NAMM 2017 announcements are, so far, a little underwhelming.)

Read my MOX retrospective and interview follow-up.

I suspect that the Tyros successor is somewhat closer to launch. Speculation has been heated ever since Yamaha filed for a US trademark on the word mark “GENOS”. The word mark was published for opposition on November 15, 2016. “Published for opposition” means that anyone who believes that they will be damaged by registration of the mark must file for opposition within 30 days of publication. If “GENOS” is indeed the name for the Tyros successor, then the 30 day period ending December 15, 2016 is cutting it very close to NAMM 2017. Even more ludicruous if Yamaha were to begin manufacturing products printed with that name for a NAMM 2017 launch. Imagine the scrap if opposition was successful!

For quite some time, I have been meaning to summarize the key U.S. patents that I believe to be GENOS-related. (Assuming that “GENOS” is the name!) I’ve procrastinated because the launch date is most likely fall 2017 at the earliest as previous Yamaha mid- and high-end arranger models are typically launched in the fall in anticipation of the holiday selling season.

A much larger barrier is the task of reading and gisting the patents. Patents are written in legalese and are much more difficult to read than the worst written scientific papers! One of the folks on the PSR Tutorial forum suggested making a list of the top five technologies for the new TOTL arranger. I generally hate the superficial nature of “list-icles,” but the suggestion is a good one. Nothing will get done as long as the barrier is big because I would much rather jam and play! I’m supposed to be retired.

The 2016 Yamaha annual report states that Yamaha want to make innovative products which are not easily copied by competitors. Patents — legally protected intellectual property — are essential to achieving this goal. Generally, a company only applies for a patent on technology in which they have a serious business interest due to the significant cost of obtaining and maintaining patent protection.

So, here are a few of Yamaha patented technologies which could appear in future products — perhaps GENOS, perhaps others.

SWP70 tone generator

This may seems like old news…

The next generation SWP70 tone generator first appeared in the mid-range Yamaha PSR-S970 arranger workstation. The SWP70 made its second appearance in the Yamaha Montage synthesizer. The S970 incorporates only one SWP70 and does not make full use of the chip. (At least three major interfaces are left unconnected.) In keeping with Yamaha’s TOTL design practice, the Montage employs two SWP70 integrated circuits: one each for AWM2 sample-playback and FM. A second sample cache interface on the AWM2 side is unconnected.

The Tyros successor likely will use two SWP70 tone generators, too. The number of available tone generation channels with two SWP70s will be massive (512 channels). Yamaha could opt for a single SWP70 and still outmatch the current generation Tyros 5. Like the Montage, there will be enough insert effect DSP processors to cover each style and user part, as many as two for every part.

It will be interesting to see (and hear) if the GENOS will make use of the second sample cache interface. A second cache would not only support more tone generation channels, but might be necessary for long, multi-measure musical phrases that are needed for full audio styles (discussed below).

The SWP70 flash memory interface follows the Open NAND FLASH interface (ONFI) standard, the same as solid state drives (SSD). ONFI memory devices can be stacked on a bi-directional tri-state bus, so potentially, the GENOS could support a large amount of internal waveform storage. This flash memory will contain the “expansion memory,” that is, physical memory reserved in flash memory for user waveforms. The expansion flash memory expansion modules (FL512M, FL1024M) are dead, Jim.

If you’re interested in Yamaha AWM2 tone generation, here’s a few patents to get you started:

  • Patent 9,040,800 Musical tone signal generating apparatus, May 26, 2015
  • Patent 8,383,924 Musical tone signal generating apparatus, February 26, 2013
  • Patent 8,389,844 Tone generation apparatus, March 5, 2013
  • Patent 8,957,295 Sound generation apparatus, February 17, 2015
  • Patent 8,035,021 Tone generation apparatus, October 2011
  • Patent 7,692,087 Compressed data structure and apparatus and method related thereto, April 6, 2010

U.S. Patent 8,957,295 is the patent issued for the SWP70 memory interface. U.S. Patent 9,040,800 describes a tone generator with 256 channels — very likely the SWP70.

Pure Analog Circuit

This may seem like old news, too, since Pure Analog Circuit (PAC) debuted in the Yamaha Montage.

Pure Analog Circuit is probably the least understood and least appreciated feature of the Montage. It’s not just better DACs, people. The high speed digital world is very noisy as far as analog audio is concerned. Yamaha separated the analog and digital worlds by putting the DACs and analog electronics on their own printed circuit board away from noisy digital circuits. Yamaha then applied old school engineering to the post-DAC analog circuitry, paying careful attention to old school concerns like board layout for noise minimization and clean power with separate voltage regulation for analog audio. Yamaha’s mid- to high-end products have always been quiet — PAC is pristine.

Since the PAC board is a separate, reusable entity, I could see Yamaha adopting the same board for GENOS.

Styles combining audio and MIDI

Yamaha are constantly in search of greater sonic realism. Existing technologies like Megavoices and Super Articulation 2 (Advanced Element Modeling) reproduce certain musical articulations. However, nothing can really match the real thing, that is, a live instrument played by an experienced professional musician. PG Music Band-in-a-Box (BIAB), for example, uses audio tracks recorded by studio musicians to produce realistic sounding backing tracks. The Digitech TRIO pedal draws on the PG Music technology for its tracks. (“Hello” to the Vancouver BC music technology syndicate.)

Yamaha have applied for and been granted several patents on generating accompaniment using synchronized audio and MIDI tracks. Here is a short list of U.S. patents:

  • Patent 9,147,388 Automatic performance technique using audio waveform data, September 29, 2015
  • Patent 9,040,802 Accompaniment data generating apparatus, May 26, 2015
  • Patent 8,791,350 Accompaniment data generating apparatus, July 29, 2014
  • Application 13/982,476 Accompaniment data generating apparatus, March 12, 2012

There are additional patents and applications. Each patent covers a different aspect of the same basic approach, making different claims (not unusal in patent-land). Yamaha have clearly invested in this area and are staking a claim.

The patents cite four main motivations, quoting:

  1. The ability to produce “actual musical instrument performance, human voices, natural sounds”
  2. To play “automatic accompaniment in which musical tones of an ethnic musical instrument or a musical instrument using a peculiar scale”
  3. To exhibit the “realism of human live performance”
  4. To advance beyond known techniques that “provide automatic performance only of accompaniment phrases of monophony”

Your average guy or gal might say, “Give me something that sounds as natural as Band-in-a-Box.” Yamaha sell into all major world markets, so the ability to play ethnic instruments with proper articulation is an important capability. Human voice, to this point, is limited to looped and one-shot syllables, e.g., jazz scat. The new approach would allow long phrases with natural intonation. [Click on images in this article for higher resolution.]

audio_accompaniment_tracks

Currently, mid- and high-end Yamaha arrangers have “audio styles” where only the rhythm track is audio. The patents cover accompaniment using melodic instruments in addition to rhythm instruments. The melodic audio tracks follow chord and tempo changes just like the current MIDI-based styles. Much of the technical complexity is due to synchronization between audio and MIDI events. Synchronization is troublesome when the audio tracks contain a live performance with rubato. Without good synchronization, the resulting accompaniment doesn’t feel right and sounds sloppy.

Accompaniment from chord chart

This next feature will be very handy. U.S. Patent 9,142,203 is titled “Music data generation based on text-format chord chart,” September 22, 2015. If you use textual chord charts (lyrics plus embedded chord symbols), you will want this!

chord_chart_example

Simply put, the technique described in this patent translates a textual chord chord to an accompaniment. The accompaniment is played back by the arranger. The user can select tempo, style, sections (MAIN, FILL IN) and so forth.

The translator/generator could be embedded in an arranger or it could be implemented by a PC- or tablet-based application. Stay tuned!

Selectively delayed registration changes

A registration is a group of performance parameters such as the right hand voice settings, left hand voice settings, accompaniment settings, and so forth. Mid- and high-end arrangers have eight front panel buttons where each button establishes a set of parameter values (“readout”) when the button is pushed. It’s the player’s job to hit the appropriate button at the appropriate time during a live performance to make voice settings, etc. A player may need a large number of buttons, if a musical performance is complicated.

Usually only a few parameters are different from one registration to the next. Recognizing this, the technique described by U.S. Patent 9,111,514 (“Delayed registration data readout in electronic music apparatus,” August 18, 2015) delays one or more parameter changes when a button is pushed. The user specifies the parameters to be delayed and the delay (such as the passage of some number of beats or measures, etc.) Thus, a single registration can cover the work of multiple individual registrations.

delayed_registration

I’ll have to wait to see the final product to assess the usefulness of this feature. Personally, I’d be happy with a configuration bit to keep OTS buttons from automatically turning on the accompaniment (ACCOMP). Sure would make it easier to use the OTS buttons for voice changes.

Ensembles / divisi

Tyros 5 ensemble voices assign played notes to individual instrument voices in real time, allowing a musician to perform divisi (divided) parts. Tyros 5 ensembles can be tweaked using its “Ensemble Voice Key Assign Type List.” Types include open, closed, and incremental voice assignment. U.S. Patent 9,384,717, titled “Tone generation assigning apparatus and method” and published July 5, 2016, extends Tyros 5 ensemble voice assignment.

The technique described in 9,384,717 gives the musician more control over part assignment through rules: target depressed key, priority rule, number of tones to generated, note range, etc. The rules handle common cases like splitting a single note to two or more voices.

ensemble_rules

These extensions could lead to some serious fun! I didn’t feel like the Tyros 5 ensemble feature was sufficiently smart and placed too many demands on the average player, i.e., less-than-talented me. The rules offer the opportunity to shift the mental finger work to software and perhaps could lead to more intuitive ensemble play. Neat.

Voice synthesis

As I alluded to earlier, arrangers make relatively primitive use of the human voice. Waveforms are usually limited to sustained (looped) or short (one-shot) syllables.

Yamaha have invested a substantial amount of money into the VOCALOID technology. VOCALOID draws on a singer database of syllable waveforms and performs some very heavy computation to “stitch” the individual waveforms together. The stitching is like a higher quality, non-real time version of Articulated Element Modeling (AEM).

VOCALOID was developed through a joint research project (led by Kenmochi Hideki) between Yamaha and the Music Technology Group (MTG) of the Universitat Pompeu Fabra in Barcelona, Spain. VOCALOID grew from early work by J. Bonada and X. Serra. (See “Synthesis of the Singing Voice by Performance Sampling and Spectral Models.”) More recent research has stretched synthesis from the human voice to musical instruments. Yamaha hold many, many patents on the VOCALOID technology.

Patent 9,355,634, titled “Voice synthesis device, voice synthesis method,” is a recent patent concerning voice synthesis (May 31, 2016). It, too, draws from a database of prerecorded syllables. The human interface is based on the notion of a “retake,” such as a producer might ask a singer to make in a recording studio using directives like “put more emphasis on the first syllable.” The retake concept eliminates a lot of the “wonky-ness” of the VOCALOID human interface. (If you’ve tried VOCALOID, you know what I mean!) The synthesis system sings lyrics based on directions from you — the producer.

An interface like this would make voice synthesis easier to use, possibly by novices or non-technically oriented musicians. The big question in my mind is whether voice synthesis and editing can be sped up and made real time. Still, wouldn’t it be cool if you could teach your arranger workstation to sing?

Music minus one

This work was conducted jointly with the MTG at the Universitat Pompeu Fabra. A few of the investigators were also involved in VOCALOID. Quoting, “The goal of the project was to develop practical methods to produce minus-one mixes of commercially available western popular music signals. Minus-one mixes are versions of music signals where all instruments except the targeted one are present.”

This is not good old center cancellation. The goal is to remove any individual instrument from a mix regardless of placement in the stereo field. You can hear a demo at http://d-kitamura.sakura.ne.jp/en/demo_deformation_en.htm.

I doubt if this technique will appear on an arranger; the computational requirements are too high and the method is not real time. However, “music minus-one” is very appealing to your average player (that is, me). My practice regimen includes playing with backing tracks. I would love to be able to play with any commercial tune on whim.

There are patents:

  • US Patent 9,002,035 Graphical audio signal control
  • US Patent 9,224,406 Technique for estimating particular audio component
  • US Patent 9,070,370 Technique for suppressing particular audio component

and there are scientific papers:

  • “Audio Source Separation for Music in Low-latency and High-latency Scenarios”, Ricard Marxer Pinon, Doctoral dissertation, Universitat Pompeu Fabra, Barcelona, 2013.
  • D. Kitamura, et al., “Music signal separation by supervised nonnegative
    matrix factorization with basis deformation,” Proc. DSP 2013, T3P(C)-1, 2013.
  • D. Kitamura, et al., “Robust Music Signal Separation Based on Supervised Nonnegative Matrix Factorization with Prevention of Basis Sharing”, ISSPIT, December 2013.

Music analysis

Yamaha have put considerable resources into what I would call “music analysis.” These technologies may not (probably will not) make it into an arranger keyboard. They are better suited for PC- or tablet-based applications.

I think we have seen the fruits of some of this labor in the Yamaha Chord Tracker iPad/iPhone application. Chord Tracker identifies tempo, beats, musical sections and chords within an audio song from your music library. It displays the extracted info in a simple chord chart and can even send the extracted “lead sheet” to your arranger. The arranger plays back the “lead sheet” as an accompaniment using the selected style.

We’re probably both wondering if Chord Tracker will integrate with the chord chart tool described above. Stay tuned.

Yamaha Patent 9,378,719 (June 28, 2016) is a “Technique for analyzing rhythm structure of music audio data.” Patent 9,117,432 (August 25, 2015) is an “Apparatus and method for detecting chords.” I wouldn’t be surprised if Chord Tracker draws from these two patents.

Yamaha has also investigated similarity measures and synchronized score display:

  • Patent 9,053,696 Searching for a tone data set based on a degree of similarity to a rhythm pattern, June 9, 2015
  • Patent 9,006,551 Musical performance-related information output device, April 14, 2015
  • Patent 9,275,616 Associating musical score image data and logical musical score data, March 1, 2016

I’m not sure where Yamaha is going with similarity measures and searching. Will they use similarity measures to selected accompaniment phrases? Who knows?

The work on score display synchronizes the display of the appropriate part of a musical score with its live or recorded performance. These techniques may be more appropriate to musical education and training, particularly for traditional brass, string and woodwind players. Yamaha derives considerable revenue from traditional instruments and this is perhaps a way to enhance their “ecosystem” for traditional acoustic instruments.

Score display is one possible application of Yamaha’s patented technique to transmit performance data via near-ultrasonic sound. The technique borrows one or more tone generation channels to generate the near-ultrasonic data signal. See my earlier post about U.S. Patent 8,779,267 for more details.

So long for now!

That’s it! I hope you enjoyed this brief tour through a few of Yamaha’s recent patent grants and filings.

If you want more information about a particular patent, then cruise on over the the U.S. Patent and Trademark Office (USPTO) web site. Navigate to patent search and plug in the patent number.

Copyright © 2017 Paul J. Drongowski

The long view

Here’s some information attributed to Martin Harris from Yamaha. Martin is one of the key sound developers at Yamaha:

  • Better Pianos
  • New Strings – 70 piece Seattle Symphony Orchestra Mega
  • New Orchestral Brass – highly dynamic
  • New Tuned Percussion – Glock, Xylo, Marimba and Vibes (with motor on)
  • New Mega guitars – Telecaster with Finger and Plectrum
  • SA2 Celtic Violin
  • New Synth Voices
  • New Classical Choir – Cathedral ambience
  • New Gospel Choir – Various articulations and Ad libs
  • New Pop Vocals – 4 session singers, 2 male and 2 female
  • Singing many dynamics and many articulations (wave cycling)

Montage? No, Tyros 4. The “SA2” should be a clue as the Montage does not provide Super Articulation 2 (SA2) voices.

My purpose here is not to be tricky, but to make the case that sample-based workstations or synthesizers draw from the sound pool that is available at development time, much the same way that hardware designers draw on the pool of available components. Products cannot be composed of imaginary circuits (“sand”), software, and sounds, after all.

To better illustrate this point, here is a rough timeline for the Tyros and Motif product lines with a few mid-range products (S9xx and MOX) thrown in:

             Tyros                        Motif/Montage
----   ------------------  ------------------------------------------
Year   Model     Physical  Model     Physical  Uncompressed waveforms
----   ------------------  ------------------------------------------
2001                       Motif      48MB     84MB 1,309 waveforms
2002   Tyros      96MB
2003                       Motif ES   96MB     175MB 1,859 waveforms
2004
2005   Tyros 2   192MB
2006
2007                       Motif XS  128MB     355MB 2,670 waveforms
2008   Tyros 3   256MB
2009
2010   Tyros 4   512MB     Motif XF  256MB     741MB 3,977 waveforms
2011                       MOX       128MB     355MB 2,670 waveforms
2012   PSR-S950  256MB
2013   Tyros 5   768MB     MOXF      256MB     741MB 3,977 waveforms
2014
2015   PSR-S970    2GB
2016                       Montage     4GB     5.67GB 6,347 waveforms

I included physical wave memory size for each product. I also included the uncompressed total sample size and number of waveforms for each member of the Motif/Montage line.

Clearly, Yamaha know how to ride the memory technology curve. Memory technology has progressed to the point where it is no longer a significant hardware design factor. Rather, the amount of wave memory in a product depends more upon the ability of the sound designers to fill it with quality content and mid- versus premium-product grading (i.e., the target market segment and price point for the model). For example, note that the mid-range S970 has more than twice the physical wave memory than the Tyros 5. Although the “expansion memory” is reserved in the S970’s physical wave memory, the S970 waveform content is substantially smaller than the Tyros 5.

The other characteristic to note is how the Tyros and Motif lines tend to leapfrog each other. Generally, the Tyros line leads the Motif line in physical wave memory and content. This is partly due to the higher memory requirements of SA2 voices, which require many additional articulation samples.

Both the Tyros 4 and Motif XF were released in 2010. Both machines use two SWP51L tone generators. (Newer products like the Montage use the SWP70 tone generator.) The Tyros 4 has twice the physical wave memory capacity with respect to the Motif XF. Yet, the Tyros 4 has sample content which did not make it to a deliverable product in the Motif line until the Montage in 2016: Seattle strings, orchestral brass, Celtic violin, vocals (choir and scat), Telecaster guitar and suitcase electric piano.

Tyros 5 expanded this content in 2013. The Motif XF, on the other hand, received a significant update in January 2014. The V.150 update added the “Real Distortion” effects implemented by the Tyros 5. (A few Real Distortion effects actually premiered in the mid-range S950.) The V1.50 update and the “White Motif” color job were life-extenders for the Motif line. I’ve conjectured before that Montage development was late and this is further evidence.

So, what can we expect in the Tyros successor which I’m calling the “Tyros++”. (Yamaha have trademarked the name “GENOS” which may be the name of the follow-on. Only Yamaha really knows.) Personally, I’m hoping for the new orchestral woodwinds from Montage. These are superbly expressive voices. I’m also expecting improved electric pianos, again, of comparable quality to the Montage.

SA2 voices will probably remain exclusive to the Tyros line. Many folks hoped that Montage would have SA2 and it didn’t. SA2 is an important product differentiator — kind of like the premium “Natural” piano voices are to the Clavinova line. I suspect that FM voices will be a differentiator for the premium Montage line in years to come as well. Yamaha tends to think of these three product lines as distinct, so cross-over is carefully controlled and limited.

All of this talk about samples and wave memory size is overly reductionist. The three main (DMI) product lines — Tyros, Motif/Montage, Clavinova — have distinct personalities and features. Motif/Montage is a synthesizer for stage and production studio. Clavinova is primarily a home or church piano. Tyros serves double duty as a home keyboard and as a workstation for performing professionals. (Oddly, many USA customers scoff at this latter role.)

Although these are all fine instruments, the personalities have quirks. Upper-range Clavinovas are Tyros-in-disguise except for multi-pads, third RIGHT voice (i.e., only two voice layers in the right hand), and no expansion memory. Tyros does not have the deep editing or modulation features of the Motif/Montage. The Motif and Montage — strangely! — do not have a tonewheeel organ mode. This latter omission is hard to understand since the Montage competes against other “stage” products like the Korg Kronos and Nord Stage.

Having compared voice programming between PSR-S950 (Tyros 3 without SA2 voices) and MOX (Motif XS sound set), the product lines are voiced (programmed) differently. Motif/Montage effect programming has a harder edge than the Tyros, which is oriented toward oldies, pop and jazz standards. (Yes, Virginia, the Tyros does have latent EDM potential to be tapped.) If the Tyros++ includes the orchestral woodwinds, for example, they will probably be programmed rather differently than Montage. Tyros++ four-part divisi ensembles with the new orchestral woodwinds would be simply brilliant. Can’t wait to see and hear what happens!

One finally editorial comment. The world is filled with product reviews. Publications like Keyboard magazine, Electronic Musician, etc. focus on individual products and rarely present a deep, long-term perspective on products. Sound On Sound reviews occasionally give historical background — usually for esoteric, retro studio pieces. As consumers, we need the long view in order to make the most informed choice.

Rainy day ramblings

A rainy New England day and the leaves and pine needles are piling up. Can’t do much of anything outdoors today, so off to GC. (Not that I really want to do yard work.)

No real agenda. I’ve been thinking about Yamaha Montage vs. Tyros 5++ vs. Nord Stage 2 ex vs. Electro 5d. That’s all “long term” as I’m having a lot of fun and staying busy with the S950 and MOX.

I really could use a “lap piano” for rehearsals. (A distant relative of “floor melodica?”) My body ached so much last Wednesday before rehearsal that even an eight pound Korg Triton Taktile was too much to schlep. So, I sang with the group, hoping to internalize the melodies of the new music for the week. This isn’t such a bad idea in any case, since it’s good form to sing along in one’s head while playing — improvisationally or not. A good reminder that, yes, hymns actually have words.

So, the issue of mini-keys rises from the grave like Joan Crawford. About one month ago, I sought and found a Yamaha Reface to try again. As it seems for most interesting music tech, one needs to drive a zillion miles or take two or more trains to find and play Reface, Montage, Korg Arp Odyssey and so forth. And thus it was to play a Reface DX. I had a fair chance to plink away and the DX provided a wide range of solid sounds. But, still, no love for the Reface mini-keys. I simply cannot imagine playing a Reface at rehearsals and even remotely enjoying the experience.

Today’s journey was inspired by a favorable review of the new Korg MicroKorg S in Sound On Sound magazine. What a pretty picture it is; Korg’s industrial design may ape Arturia, but they took the best! The review mentioned the larger mini-keys (what an oxymoron!) of the Microkorg XL+ and I decided to find a comparably equipped Korg.

Happily, today’s trial was the Minilogue, which proved to be a fun time indeed. It’s got a pretty sweet sound for an inexpensive polyphonic analog synth. With the right programming, I could even warp the Minilogue into a “lap piano” good enough for rehearsals. A built-in speaker a la the new Microkorg S would be nice. However, I could easily run it into the JBL Charge 2 that serves as the battery-powered amplifier for the Triton Taktile 49 (my usual rehearsal ax). It’s a shame that the Minilogue isn’t battery powered, too, as it would make a terrific portable instrument.

The Minilogue’s oscilloscope is a real treat and is totally entertaining. It’s also a reminder that I need to add a mini-/micro-oscilloscope to the dining room lab one of these days. The oscilloscope display is a small OLED screen much like the screen in the Triton Taktile.

The Minilogue’s keys are far more playable than the Reface. The keys are longer than typical mini-keys and the black keys (sharps and flats) are narrow. This combination makes for a surprisingly effective keyboard design. I wouldn’t want to play a gig with these, but they are suitable for plinking out melodies and such at rehearsal. (See this article at Synthtopia for a good analysis of the Minilogue’s key size.) Several other Korgs have the same key design: the Korg Arp Odyssey and the “Natural Touch” microKEY, to name two.

I’ll say this for Korg. They may miss the mark sometimes, but these folks are actively innovating at a fast pace!

After messing with the Minilogue, I revisited the Nord Stage 2 ex. This is a fine instrument and is in the same premium range as the Yamaha Montage. Having also revisited the Montage in recent weeks, the Nord’s string and woodwind voices just don’t come up to the same level as Montage. The Montage voices live and breath. Although the Nord is quite good, these voices sound like “sample playback.” Kudos to Yamaha.

I will have more to say about Montage in a forthcoming post. In short, is it time to spring for Montage or wait for the successor to the Tyros 5 (“Tyros++”)?

Time for a cuppa…

Montage: The hardware platform

The Yamaha Montage is one heck of a fine keyboard! Let’s take a quick look inside.

The Montage hardware is a new platform. Sure, there are a few things borrowed from older products, but that’s like blaming Apple for reusing a USB controller. The digital and analog electronics are all new.

There are several printed circuit boards and I will only cover the main PCBs.

  • PNL/PNR: Handles the front panel buttons, knobs, sliders, master volume and gain.
  • LCD: Bridge between the LCD controller in the main CPU and the 7inch TFT WVGA LCD touch panel.
  • DJK: Digital jacks (foot controllers, foot switch, sustain, MIDI)
  • AJK: Analog electronics and jacks (DACs, ADC, balanced/unbalanced outputs, analog input, phones).
  • DM: Digital electronics (main CPU, tone generators, external USB and Ethernet interfaces).

A few ports and connections are “Debug only” and are not populated or used in normal operation. The Ethernet port to the main CPU is debug only, for example.

The separation of the digital and analog electronics and jacks is significant. When the Montage was first introduced, I mentioned that “Pure Analog Circuit (PAC)” appeared to be an exercise in old school engineering that pays careful attention to board layout, component selection and clean power. The AJK board bears this out. The AJK board contains the stereo DAC and ADC components:

  • Audio ADC: Asahi Kasei AK5381VT-E2 24-bit ADC (96KHz max)
  • Audio DAC assignable output: Asahi Kasei AK4393VM-E2 24-bit DAC (96KHz max)
  • Audio DAC main output and phones: Asahi Kasei AK4393VM-E2 24-bit DAC

The ADC and DACs communicate with the DM board over an audio backbone. Physical separation keeps digital circuits (with fast rise/fall times) away from analog signal paths. The AJK board also has its own voltage regulators. They ain’t kiddin’ about PAC!

Yamaha adopted ARM architecture processors for the first time in the Reface series. (See my article about the Reface CS and Reface DX internals). Montage continues this trend.

  • The PNL board contains an MB9AF141NA ARM microcontroller with a 40MHz internal clock. The ARM microcontroller is assisted by a Toshiba TMP89FW24AFG microcontroller (SOC) operating at 10MHz. In Yamaha’s terminology, this ARM is a “sub CPU.”
  • The main CPU is an AM3352BZCZ80 ARM microprocessor with an 800MHz CPU clock. It is a Texas Instruments Sitara ARM Cortex-A8 single core MPU.

The ARM Cortex-A8 is a major departure from the Motif line which employed MIPS architecture microprocessors (such as the Toshiba TX4939C) as the main CPU.

We first saw the new SWP70 tone generator in the Yamaha PSR-S970 arranger workstation. The SWP70 replaces the SWP51L which has been the mainstay in mid- to upper-tier Yamaha products for several years. Top-tier products (e.g., Motif XF and Tyros 5) have two SWP51L tone generator chips which together share a common wave memory. The two SWP51Ls split AWM2 voice and DSP duties.

So, it isn’t any surprise to see two SWP70s in the Montage. What is suprising, however, is how the Montage’s two SWP70s are deployed. The two SWP70s are not connected in the “classic” structure. Instead, the microarchitecture is assymetric.

  • TG Master: The TG Master is connected to wave ROM (flash), wave RAM (SDRAM), and DSP RAM (SDRAM).
  • TG Slave: The TG Slave is connected to DSP RAM (SDRAM) and an SSP2 processor (through an ASIC gate array bridge).

I’ll have more to say about the SSP2 in a moment. The bridge connects the TG Slave’s serial audio interface to the SSP2 and the bridge carries several channels of digital audio (I2S format) to/from the TG Slave and the SSP2.

Of course, one’s first thought is to presume that the TG Master handles AWM2 voices and the TG Slave handles FM-X voices. There’s a lot of generation and DSP resources within an SWP70, so I doubt if they are left idle in the TG Slave even though the TG Slave does not have memory memory! There is a sixteen bit wide bus between the TG Master and Slave — not really sufficient to carry the sample bandwidth needed for AWM2 tone generation, however.

Each SWP70 has 16MBytes of SDRAM for DSP working memory. The TG Master has 32MB of Wave RAM. The Wave RAM is a cache for samples that are read from wave flash. (See my earlier article about the SWP70 and U.S. Patent 9,040,800.) Commodity NAND flash (as one would find in an SSD) favors sequential access; random access is horribly slow. The Wave RAM caches samples that are read from NAND flash.

Now, the big question: How much wave memory? The Montage wave memory consists of four Spansion (Cypress) S34ML08G101TFI000 8Gbit, ONFI-compliant devices with a total physical capacity of 4GBytes. In classic fashion, the memory is separated into upper and lower bytes. The Yamaha specifications state wave size as, “Preset: 5.67 GB (when converted to 16 bit linear format), User: 1.75 GB.” Assuming a 2.52 aggregate compression factor, the arithmetic works out in the following way:

    4GB physical = (5.67GB / 2.52) preset + 1.75GB user

The Motif series has an aggregate compression factor in this ballpark.

The Montage has a common multi-channel serial audio bus (I2S format) that interconnects the main CPU, TG Master, TG Slave, SSP2, ADC and audio DACs. This is the digital audio backbone. The bus conveys digital audio from the generators and effects on the DM board to (from) the converters on the AJK board.

The SSP2 is a Yamaha proprietary processor which is used in many products: Reface CS, Reface DX, PSR-S950 workstation, etc. The SSP2 integrates signal processing, USB, serial audio, and more. It is the “designated hitter” for Yamaha designs. When Yamaha needs a flexible chip with DSP and interfacing skills, it calls on the SSP2. (Roland have a similar jack of all trades called the “ESC2.”)

The Montage’s SSP2 has only 2MBytes of NOR flash memory on its CPU bus. That’s not a lot of program space! The SSP2’s USB port is connected to the external “USB TO HOST” interface. The SSP’s other interfaces convey digital audio to/from the digital audio backbone and the TG Slave. Thus, the SSP2’s main role is to route digital audio. The Montage can send 16 channels and receive 3 channels of stereo 24 bit/44.1 kHz digital audio to/from an external computer or iOS device

Commentary and opinion

I hope you find this quick overview to be informative and helpful. I try to present the system structure objectively without too much speculation.

Please discuss the Montage responsibly! Yamaha have a definite design style which exploits their expertise in very large scale integration (VLSI) as a strategic advantage. When Yamaha specify maximum polyphony as “128 AWM2 and 128 FM-X”, that’s 128 each all day long without any dependencies on the number of effects in use, etc. Some people lament this approach and wish that Yamaha would base their systems on x86 even though x86 is not always the best choice for embedded systems. Yamaha are no strangers to x86 having obtained many patents covering x86-based tone generation back in the 1990s and early 2000s.

Before anyone carries on about SSDs and SATA, please study the design of the SWP70. The SWP70 memory interface has all of the power, flexibility and Open NAND Flash Interface (ONFI) compatibility as an SSD without the need for SATA bus protocol.

Users may rightfully be disappointed at the lack of user-installable expansion memory. Yamaha are not evil; they simply do not have a convenient way to provide user-installable memory at the chip level. I think users should lobby for more built-in expansion memory, but they shouldn’t delve into conspiracy theories about Yamaha’s engineering or managerial practice.

Some wag will undoubtably complain about “memory parts cost only $10,” “my jump drive is 32GBytes,” “the need to stream 100s of gigabytes,” etc. Fine. But, an instrument design is a just one design. It is what it is is. One should listen to the Montage with their ears, then question whether gobs of samples would improve the playability, sound or expression of the Montage. Also, if you really believe that you can build a better instrument at the same price point, by all means, line up the VCs and engineers, go to work, and compete.

The final result is what we hear with our ears. The hardware is important, but it is simply a platform for the “soft content” — the algorithms, code, waveforms and sound design. In the long run, the soft content is the biggest development expense and is the most important element in a successful digital musical instrument product.

Perspective. Chill. Peace.

Here are links to related articles on this site:

All site content is Copyright © Paul J. Drongowski

Tenor to the max!

A few posts ago, I deconstructed the Yamaha MOX (Motif XS) tenor saxophone patches. The article summarizes the waveform assignment and Expanded Articulation (XA) control for each element within a preset voice. I’m not going to dive into the basics here, so I recommend reviewing the article for background information on XA and its behavior.

The blog entry covered the MOX (Motif XS) tenor sax presets, but not the newer Motif XF (MOXF) presets. The XF series workstations have two additional waveforms:

  1. Tenor Sax2 Growl
  2. Tenor Sax2 Falls

bringing the XF up to the level of Tyros/PSR Super Articulation tenor sax voices. This article deconstructs the “Tenor MAX” preset which makes use of these additional waveforms. The analysis is relevant even in the Montage era because the Montage tenor sax is based upon the XF waveforms (no update in the new model).

Pushing the main topic aside for a moment, Super Articulation 2 (SArt2) voices are a whole different technology and even to this day, the Motif and Montage do not implement SArt2 voices. SArt2 seems to be a premium feature that is reserved for Tyros. SArt2 requires realtime analysis of playing gestures and computation which is beyond basic AWM2 synthesis.

The table below gives the waveform, key range, and velocity range for each element in the “Tenor MAX” patch.

    Elem#  Waveform            XA        Notes   Velocity
    -----  ------------------  --------  ------  --------
      1    Tenor Sax2 Soft     AllAFOff  C-2 G8    1   79
      2    Tenor Sax2 Med      AllAFOff  C-2 G8   80  110
      3    Tenor Sax2 Growl    AllAFOff  C-2 G8  126  127
      4    Tenor Sax2 Hard     AllAFOff  C-2 G8  111  125
      5    Tenor Sax2 Hard     AF2 On    C-2 G8    1  127
      6    Tenor Sax2 Falls    AF1 On    C-2 G8    1  127

When the AF1 and AF2 buttons are OFF, one of the first four waveforms are triggered based upon the key velocity. The four elements cover the dynamic range from soft, through medium, through hard, all the way up to growl. The AF1 and AF2 buttons select particular waveforms depending upon the player’s intention. When AF2 is ON, all key velocities trigger the hard waveform. When AF1 is ON, all key velocities trigger sax falls.

So, bottom line, the “Tenor MAX” programming is just about what I expected.

I hope the analysis of tenor sax programming has helped you to understand XA and Motif/MOX voice programming. If you’re a Tyros/PSR player, then I hope that this analysis has helped you to understand a little bit of the technology beneath the Super Articulation voices.

Montage review: Yes, I’ve played one!

The Yamaha Montage synthesizer is now hitting stores in North America. One of the local retailers (GC in Natick) have a Montage set up for demo. Let’s go!

The demo unit is a Montage8 with the 88-key balanced hammer effect keyboard. I have always liked Yamaha’s upper-end “piano” actions and the Montage8 is no exception. I primarily play lighter “synth” action keyboards like the MOX and the PSR-S950. Fortunately, I spent the previous week working out on the Nord Elecro 2 waterfall keyboard, which requires a slightly heavier touch. I played the Montage8 for a little bit more than an hour without my hands wilting — a good sign.

First off, the demo unit was plugged into two Yamaha HS7 monitors and a Yamaha HS8S subwoofer. GC usually patches keyboards through grotty keyboard amplifiers, so I suspect that Yamaha provided the monitors in order to create the best impression of the Montage. I was dismayed when I started off with a few B-3 organ patches and could not contain the low end. The front panel EQ simply didn’t do the job. Time to check the monitor settings. The HS7s were flat, but the HS8S subwoofer level was cranked. After backing off the sub, all was right with the world.

Yes, some people like to simulate small earthquakes with subsonic frequencies. This, however, is not conducive for acoustic music. It’s not conducive for peaceful co-existence with your bass player either. If you encounter a Montage in the wild, check the EQ before proceeding!

So, as you may have gathered already, this is not a review of Montage for EDM. I took along my church audition folder (covering gospel to contemporary Christian to traditional and semi-classical music) and a small binder of rock, jazz, soul and everything in between. I’d like to think that this is the first time anyone has played “Jesu, Joy of Man’s Desiring” on the Montage, however poorly.

The electric pianos are terrific. I had a fine old time playing soul jazz and what not. Great connection between keys and sound. Comparing against Nord Stage, I would say that the Montage is top notch in this department and definitely a cut above the old Nord Electro 2. Yamaha did not put the Reface CP (Spectral Component Modeling) technology into Montage; they didn’t need to.

Tonewheel organ is still Yamaha’s Achilles’ heel. There is some modest improvement, but the Montage is not in clone territory. In this area, I would say, “Advantage Nord.” If I can cover B-3 with the MOX on Sunday, I’m sure that the Montage is up for medium duty. However, the tonewheel organs lack the visceral thrill of the EPs. I will say that the 88-key action did not inhibit my playing style too much. (If I was going to buy a Montage, tho’, it would be a 6.)

The pipe organs got some tweaks, mainly by enhancing the Motif pipe organ sounds via FM. There are a few lovely patches, but I will still look to the Tyros (and the PSR expansion pack) for true realism. The Nord Electro 5d has modeled principal organ pipes where the drawbars change the registration. Ummm, here, I would give the edge to Nord. Plus, the pipe organs in the Nord sample library are more on par with the Tyros and PSR expansion pack. Hate to say it: Montage pipe organs are good “synthesizer pipe organs,” and that ain’t entirely a compliment.

The new strings are wonderfully realistic, especially for solo/melody lines. I really enjoyed bringing sections in and out dynamically. (The expression pedal was sync’ed to the SuperKnob.) With the changes in our music ministry group, I’ve been playing more melodic and exposed parts. I could really dig playing a reflective improvisation for meditation using the strings and woodwinds under Motion Control.

The classical woodwinds got a boost in Montage, too. The woodwinds are all excellent although the sonic delta above Motif XF (MOXF and MOX, too) was not as “Wow” as the strings. Most likely, my ears were getting tired at that point…

Since I was losing objectivity, I just briefly touched on brass. I need good French horns and Montage did not disappoint. I wish that I had spent time with the solo trumpets and trombones, but my ears were telling me to knock it off.

The new Telecaster (TC) is quite a treat. The “Real Distortion” effects (Motif XF update 1.50) are now standard and the programmers made good use of them. I wish that the Montage had the voice INFO screen from the PSR/Tyros series. The INFO screen displays playing tips and articulations for each voice. This makes it a lot easier to find and exploit the sonic “Easter eggs” in the patches. (“Play AF1 to get a slide. Play AF2 to get a hammer on.”)

Fortunately, it was a rainy Saturday afternoon and the store was empty — disturbed only by the occasional uncontrolled rugrat pounding on some poor defenseless keyboard. Overall, I felt like I really heard the Montage and could make a fair evaluation.

I did not dive into editing, arpeggios, motion sequencing, recording, etc., so this is surely not a comprehensive review. Anyone spending less than one month with this ax cannot claim “comprehensive.” It just ain’t possible, so I would call my initial opinion, “first impressions.” That said, I can see why the Live Sets are important. I mainly dove in through Category Search where some of the touch buttons are a wee too small. Punching up a sound in full combat requires BIG buttons.

Montage looks, feels and sounds like a luxury good. Montage is also priced like a luxury good. The Montage8 MAP is $4000 USD. It is quite a beast physically and I would most likely go for the Montage6 at a “mere” 33 pounds and $3000 USD. None of the Montage line would be an easy schlep, especially when I have to buzz in and out of my church gig fast.

Would I buy one? Tough call. On the same field trip, I got to sit in a Tesla Model S ($71,000 USD) — a luxury car built around a computer monitor or two. I just recently bought a Scion iM (AKA Toyota Auris, Levin, Blade, whatever) for about $20,000 USD. Both cars could get me to the gym and back. I like my iM. What does that say about me as a customer? Do you think I would buy a Montage? Enigmatic.

See the list of new waveforms in the Montage. Also, check out the latest blog posts! Update: May 10, 2016.

Montage: New waveforms

Well, well. Interesting times, again. Yamaha have now released the Montage Reference Manual and the Data List Manual. Download them from your local support site.

At the same time, the Motif XF is being blown out. Not only have retailers dropped prices, Yamaha itself is saying “Sayonara” with a promotional rebate of its own. If you want a Motif XF, now is a terrific time to buy!

I started the decision making process last weekend by comparing the MOX waveforms against the Motif XF waveforms. To me, new waveforms represent true value — true sonic potential — over a keyboard’s predecessor. Unless MOXF owners want all of the bells and whistles of the Motif XF (e.g., big color display, on-borad sampling, sliders, version 1.5 Real Distortion effects, etc.), they already have the XF waveforms. MOX owners have the older Motif XS factory set, so they might be interested in upgrading to Motif XF. Here is a list of Motif XF waveforms that are not in the MOX:

    CF3 4 layer (vs. MOX 3 layer)
    S6
    Clav4
    Harpsichord2
    Farfisa (Fr)
    Vox (Vx)
    Accordion2
    Accordion3
    Tango Accordian2
    Mussete Accordion
    Steirisch Accordion
    1Coil
    Jazz Guitar
    Pick Rndwound2
    Pick FlatWound
    Finger Rndwound
    Sect Strngs
    Tremolo Strings
    Live Pizzct
    Soft Trumpet
    Trumpet Vib
    Trumpet Shake
    Flugelhorn2
    French Horn Sft
    French Horn Med
    Soprano Sax3
    Alto Sax3
    Tenor Sax2 Soft
    Tenor Sax2 Falls
    Sax Breath
    Piccolo2

After looking over the list, frankly, I’m not motivated (bad pun) to buy an XF. My PSR-S950 does a great job covering these sounds. Plus, at 33.3 pounds (XF) vs. 15.4 pounds (MOX), a Motif XF is likely to remain in the studio, not at the gig.

The Yamaha Montage offers a bigger upgrade thanks to the large built-in waveform memory. Here is my first pass list of new Montage waveforms. I’ll leave it to you to comb through synth and percussion waveforms.

    CFX 9 layer
    S700 3 layer
    EP4 5 layer
    Rd Soft 5 layer
    Rd Hard 4 layer
    Rd73 5 layer
    Rd78 5 layer
    Rd KeyNoise
    Wr1 3 layer
    Wr2 4 layer
    Wr3 5 layer
    Wr KeyNoise
    Clav5 3 layer
    Clav KeyNoise
    CP80 5 layer
    CP80 KeyOff
    Vibraphone3
    Motor Vibes
    Tonewheel1 Fast/Slow
    Tonewheel2 Fast/Slow
    Tonewheel3 Fast/Slow St
    Tonewheel4 Fast
    Tonewheel5 Fast
    Tonewheel6 Fast
    SctAcc Mussete
    SctAcc
    Acc Key On/Off
    Nylon2
    Flamenco
    Steel2
    Steel3
    TC Cln Pick
    TC Cln Fing
    Acoustic2 (bass)
    Violin2 1st St
    Violin2 2nd St
    Viola2 St
    Cello2 St
    Celtic Violin
    US Strings
    Violins 1st
    Violins 2nd
    Violas
    Cellos
    ContBasses
    CelticHarp
    Trumpet 3
    Piccolo Tp
    Trombone 3
    Bass Trombone
    French Horn2
    Euphonium
    BrassSect3
    BrassSect3 Acc/Doits/Shake/Falls
    Trumpets1
    Trumpets2
    Trombones1
    Trombones2
    FrHorns2
    FrHorns3
    Clarinet2
    Clarinet3
    Oboe3
    Oboe4 NV/Stac
    Bassoon2
    Bassoon3
    Flute3
    Flute4 NV/Stac/Flutter
    Piccolo3
    Piccolo4 NV/Stac
    Low Whistle
    High Whistle
    Boys Choir
    Gospel Choir
    Syllables
    ScatCycle
    LatinCycle

Yamaha really upped the ante with new acoustic and electric piano samples. Yamaha have been promoting these improvements and rightfully so. I can’t wait to try these out. Jazzers will be glad to see the new vibraphone samples, too.

Tonewheel organ got a modest upgrade. I’ll reserve judgement until I can hear and play the Montage. The tonewheel samples have fast and slow variants, so the Leslie is probably sampled in. Not always a good sign, but, hey, I’m listening. A couple of more accordions round out the keyboard additions.

Guitars also got a modest upgrade. There are a few more acoustic guitars and two Telecaster variants (pick and finger). At this point, I must mention that all of the new waveforms have 3, 4, 5 or more layers and many articulations. So, even if the list looks short, the new voices should be quite rich and appealing.

Orchestral instruments got a major, major upgrade. As a liturgical musician who relies on these voices heavily, I’m excited. I called out only a few of the available articulations. Musicians who mock up orchestral scores or cover orchestral parts live should definitely take note of the Montage! Surprisingly, there aren’t new pipe organ waveforms. (Is an expansion pack in the works?)

Finally, there are a slew of choir and vocal samples from the Tyros 5. “Syllables” in the list above are all of the zillion duhs, doos, etc. ScatCycle includes the (infamous) scat syllables, but cycles through the syllables for variety. This is already a feature of the Tyros 5.

Given the boost in the orchestra department, I’m interested. I just wish that the Montage weighed about 20 pounds or less. Perhaps I need to wait for the MOXF follow-on in the light weight, mid-price category.

That’s it for now. I might have missed something during the first pass and will correct the list as I learn more about the Montage. At some point, I’ll take a look at Montage effects, too.

Read my initial review of the Montage8. Update: May 10, 2016.

All site content is Copyright © Paul J. Drongowski unless indicated otherwise.

Montage wave memory

Folks are speculating about the wave memory in the new Yamaha Montage. Without the actual service manual in hand, it’s impossible to be definitive. However, I think it’s reasonable to assume that:

  1. The Montage uses the new SWP70 tone generator, and
  2. The wave memory interface is the same as the PSR-S970.

Here’s a few details about the SWP70 and wave memory interface in the PSR-S970 arranger workstation. If you buy into the two assumptions above, then these details should apply to the Montage as well.

I realize that my earlier posts dive deep and cover many aspects of the SWP70. This blog post concentrates on a few specific aspects of the wave memory interface in the PSR-S970 instead of the whole she-bang.

The SWP70 has two 8-bit memory data ports — HIGH and LOW — and a common set of wave memory control signals. The interfacing standard is the Open NAND FLASH interface (ONFI). One flash memory device plugs into the HIGH port and a second flash memory device plugs into the LOW port. The two flash memory devices share the control signals, that is, the same control signals are routed to both memory devices.

SWP70_wave_memory

The PSR-S970 memory devices are Spansion S34ML08G1 8Gbit NAND flash memory devices. The S34ML08G1 is a dual-die stack of two S34ML04G1 die. Spansion currently produces the S34ML16G2, which is a quad-die stack of four S34ML04G1 die.

Thanks to ONFI, the 16Gbit (2 GByte) S34ML08G1 is pin compatible with the smaller S34ML08G1. Thus, a tone generator complex with twice the wave memory capacity can be built in the same printed circuit board (PCB) footprint.

The ONFI bus is not the same as the old flash expansion memory DIMM interface as provided in the later Tyros and Motif/MOXF products. The DIMM expansion memory interface consists of two, full-parallel memory channels with separate address and data signals for each channel. An ONFI memory device, on the other hand, has a single bi-driectional (tri-state) data port. The memory address, data and control information are sent to the memory device in byte-serial fashion. (The bus is time-division multiplexed.)

The tri-state electrical interface supports expansion by plugging multiple memory devices onto the same 8-bit multiplexed bus. The control signals and protocol choose the device that drives (or reads) the tri-state bus at a given time.

Yamaha may not have found a convenient way to make the ONFI bus user-extensible. Or, Yamaha have simply decided to not provide end-user wave memory expansion in the field. Yamaha accrue several benefits by dropping the DIMM expansion slots:

  • The cost of the DIMM connector(s) is eliminated including the cost of mounting and testing the connectors.
  • PCB size is greatly reduced.
  • The access cover and chassis hole are eliminated.
  • The cost of stocking another part/SKU is eliminated.

The disadvantage to the end-user is “All the sample space you get is built-in right from the start and no more.”

Yamaha’s new approach to user waveform memory is to reserve space for user samples in the physical wave memory. In other words, the user expansion memory is contained in the same physical package (48-Pin TSOP 12mm x 20mm x 1.2 mm) as the factory waveforms. The Montage specifications describe wave memory as:

Preset: 5.67 GB (when converted to 16 bit linear format), User: 1.75 GB

The compressed factory waveforms occupy 2.835 GBytes of physical memory (assuming a 2-to-1 compression factor). Compressed user waveforms require 0.875 GBytes of physical memory. These figures point toward a 4 GByte physical wave memory size, which would reserve some space for Yamaha’s own future use. BTW, if the actual effective compression factor is higher, then user samples could be stored uncompressed.

For reference, here is a terse summary of the Spansion S34ML08G1 device that is used in the PSR-S970:

    Spansion S34ML08G101TFI000
    Density: 8Gbits (4Gbits x 2)
    Random access: 30us (max)
    Sequential access: 25ns (Min)
    Block erase time: 3.5ms
    Program time: 300 us (typical)
    Data retention: 10 years (typical)
    100,000 program/erase cycles (typical)
    Pricing: $7.84 USD (quantity 250 up)

The data retention time (10 years) should raise a few eyebrows. NAND flash is volatile and charge (data) is eventually lost unless it is refreshed. I wonder how many manufacturers have planned for the day when keyboards, phones or whatever lose presumably “permanent” data stored in flash? Mask-programmable ROM never had this problem… I don’t think Hank done it this way.

Update: Read more about NAND flash data retention.

All site content Copyright © Paul J. Drongowski unless otherwise indicated

What you might have missed…

Here’s a few small items that you may have missed in the deluge of Montage-related videos and forum comments.

Stephen Fortner — former editor of Keyboard Magazine — shot an interview and demo with Yamaha’s Nate Nate Tschetter back in December 2015. It’s a sneak peak. Here’s the link:

Montage sneak peak with Keyboard Magazine

Dave Polich is a sound programmer and musician who has contributed voices to many keyboards including the Motif series and now Montage. Dave made an interesting post to the Gearslutz.com site:

I’ve had one in my studio since January of 2015 (because I’m on the Yamaha sound design team).

It sounds great. It does not sound “thin”. You can make it sound thin with EQ or filters if you want. It’s very loud, about twice as loud as the Motif XF. Bottom end is warm, full, midrange is punchy and present, highs are detailed and clear. It’s the only true 8-operator FM synth on the market now. it is not the old DX7 style of FM sound, but very high-definition, the engine is similar to the FS1R but no formants, however, you do have more than just sine-waves as carriers/modulators, every operator can have resonance and its own amplitude envelope, plus you have global filter and amplitude envelopes available for an FM “part” (which is the same as a “voice”, or single sound, in the old Motif series), as well as DSP effects. There are loads of new samples. Effects are the usual superior Yamaha quality. The motion control features are insane. It has an envelope follower that works. Do I care about the lack of sequencer? Absolutely not. I just like a synth that sounds good. Montage is a true synthesizer (FM) with sample playback…great combination.

The factory sounds are a good balance between bread-and-butter and EDM. The electric pianos feature adjustable balance between the main tine sound and the mechanical noise. The organs feature adjustable overdrive, leakage, chorus/vibrato and percussion. Yes there is a 9-drawbar B3. Many of the sounds are hybrids of FM and sample playback, including string and brass sounds. There are FM bell and percussion sounds, guitars, sitars, dulcimers, basses, electric pianos, clavs, and tons of FM pads, soundscapes, and edgy EDM sounds too.

Don’t judge anything based on YouTube audio, that audio sucks. SoundCloud audio sucks. The only way you should hear it is in person.

I hope that Dave doesn’t mind that I quoted him here. He is a knowledgable, reliable guy.

In a separate comment, Dave mentioned that the sounds have not yet been finalized. I guess we won’t see the Data List any time soon! That might also explain why the Yamaha demonstrators seem to rely on the same Performances…