Performance counter kernel module

As promised, I’ve described the design of a Linux loadable kernel module that allows user-space access to the Raspberry Pi (ARM 1176) performance counters. By the way, the design of the module is not specific to Raspbian Wheezy or even the Raspberry Pi for that matter. I believe that the kernel module could be used on the new Beagleboard Black (BBB) to enable user-space counter access on its ARM Cortex-A8 processor under Linux. I just ordered a BBB and will try out the code when possible. (Assuming quick delivery!)

The kernel module alone isn’t enough to measure performance events. In fact, the kernel module doesn’t even touch the counters. It merely flips a privileged hardware bit which lets user-space programs read and write the performance counters and control register. So, I have also written a few user-space C functions to configure, clear, start and stop the performance counters. An application program just needs to call a few functions to choose the events to be measured and start counting, to stop counting, to get the raw counts, and to print the event counts.

I have uploaded the source for both the kernel module (aprof.c) and the user-space functions (rpi_pmu.h and rpi_pmu.c). In addition, there is source for some utility functions that I like to use in benchmark programs (test_common.h and test_common.c). All of this is a work in progress and I will update the source when major enhancements or changes are made.

Speaking of source, I have found a way of organizing and storing source code through WordPress. WordPress is kind of security paranoid and doesn’t allow you to upload source code or even gzip’ed TAR files. I ran into this issue when I attempted to upload a make file and WordPress wouldn’t let me do it (with complaints about potentially malicious code and so forth). WordPress does let you post source for viewing, however.

So, I’ve added a Source menu item to the main menu. I want the menu structure below the Source item to operate like a browsable code repository. The first level of items below Source are projects, like the kernel module. The next level of menu items navigate into the source belonging to a project. Each make file and source file is a separate page. The source code is displayed using the SyntaxHighligher plug-in in order to keep indentation. No other formatting or highlighting is done just to keep things simple. I could cut and paste code from these pages, so I hope you can, too!

An introduction to performance tuning (and counters)

My latest page is an overview of performance tuning on ARM11. The Raspberry Pi is a nifty little Linux box, but it’s kind of slow at 700MHz. Therefore, I suspect that programmers will have an interest in tuning up application programs and making them run faster. Performance tuning is also a good opportunity to learn more about computer architecture and machine organization, especially the ARM1176 core at the heart of the Raspberry Pi and its memory subsystem.

The ARM1176 has three performance counters which can measure over 20 different microarchitectural events. One of these counters is dedicated to core clock cycles while the other two are configurable. The new performance tuning page has a brief overview of the counters and it has a table with the supported events.

The new page also describes two different use cases for the counters: caliper mode and sampling mode. Caliper mode counts the number of microarchitectural hardware events that occur between two different points in program execution. Caliper mode is good for measuring the number of data cache accesses and misses for a hot code region like a loop. The programmer inserts code to start counting at the beginning of the hot region and inserts code to stop counting at the end of the hot region. This is the easiest use case to visualize and to implement. It’s the approach that I’m taking with my first performance measurement software and experiments (a custom kernel module plus some user-space code). These experiments are almost finished and ready for write up.

Sampling is a statistical technique that produces an event profile. A profile shows the distribution of events across program instructions, routines, source lines, or modules. This is a good way to find hot-spots in a program where tuning is most beneficial. Sampling does not require modification to source.

Performance Events for Linux (informally called “PERF”) is the standard tool for program profiling on Linux. At the moment, PERF has a bug which prevents it from sampling hardware events. I’ve been looking into this problem, too, and hope to post some results. In the long-run, I want to post examples using PERF in order to help people tune up their programs on Raspberry Pi.

ARM11 microarchitecture

You probably know by now that the Raspberry Pi uses an ARM processor. In particular, the Raspberry Pi model B uses the Broadcom BCM2835 system on a chip (SoC). The BCM2835 is a member of the ARM11 family. Its name is the ARM1176JZF-S. (Whew!)

Like all computers, the BCM2835 has an internal processor structure called its “microarchitecture”. The word “architecture” refers to the machine features that are visible to a programmer — things like the instruction set. The microarchitecture refers to the building blocks in the guts of the machine, or more properly, in the guts of a specific implementation (BCM2835) of an architectural family (ARM11 or ARMv6).

The microarchitecture can have a big effect on program performance. Compiler writers, for example, study the microarchitecture in order to build compilers that generate the best possible code for the microarchitecture. As we’ll see in later posts, application programmers can also take steps to tune their programs for the underlying microarchitecture. Tuning is important on Raspberry Pi because at 700 MHz, this machine is running its heart out!

Today, I added a page that summarizes the characteristics of the BCM2835 (ARM11) microarchitecture. Please check out the info! We will revisit this page when I discuss profiling and tuning.