Yamaha CSP pianos: First take

Yamaha just announced the Clavinova CSP series of digital pianos. There are two models: CSP-150 and CSP-170. The main differences between the 170 and 150 are keyboard action (NWX and GH3X, respectively) and sound system (2 x 45W and 2 x 30W, respectively). USA MSRP list prices are $5,399 to $5,999, and $3,999 to $4,599 USD.

These are not stage pianos. They are “furniture” pianos which complement and fit below the existing CLP line.

Here’s my imagined notion of the product pitch meeting:

Digital piano meets arranger meets Rock Band. Let’s say that you don’t have much (any) musical training, but you want to play along with Katy Perry. Sit down at the CSP with your smart device, install the Smart Pianist app and connect via Bluetooth. Call up “Roar” in the app and get a simple musical score. Start the song, follow the LEDs above the keys and play along with the audio. The app stays in sync with the audio and highlights the notes to be played on each beat. So, if you learned a little bit about reading music, you’re good to go.

Sorry, a little bit more than an elevator pitch, but this is first draft writing! 🙂

That is CSP in a nutshell. The CSP is a first-rate piano and it has a decent collection of non-piano voices and arranger styles. The CSP even includes the Hammond-ish “organ flutes” drawbar organ voices. So, if you want to jam out with electric guitar, you’re set. If you want to play chords with your left hand and freestyle it, the CSP is ready.

If you’re looking for a full arranger workstation, though, you’re missing some features. No pitch bend wheel, no mod wheel, no multipads, no accompaniment section (MAIN, FILL, …) buttons. No voice editing; all voices are preset.

And hey, there’s no display either! The Smart Pianist app is your gateway to the CSP feature set. You can select from a few voices and styles using the FUNCTION button and the piano keyboard, but you need the app to make full use of the CSP. Eliminating the CLP’s touch panel, lights and switches takes a lot of cost out of the product, achieving a more affordable price point.

I could see the CSP appealing to churches as well as home players given the quality of the piano and acoustic voices. Flipping the ON switch and playing piano is just what a lot of liturgical music ministers want. The more tech savvy will dig in. Pastors will appreciate the lower price of the CSP line.

From the perspective of an arranger guy, the CSP represents a shift away from the standard arranger. For decades, people want to play with their favorite pop tunes. In order to use a conventional arranger (no matter what brand), the musician must find a suitable style and the musician must have the musical skill to play a chord with the left hand, even if it’s just the root note of the chord. Often the accompaniment doesn’t really “sound like the record” and the player feels disappointed, unskilled and depressed. Shucks, I feel this way whenever I make another attempt at playing guitar and at least I can read music!

The CSP is a new paradigm that addresses these concerns. First, the (budding) musician plays with the actual recording. Next, the app generates a simplified musical score — no need to chase after sheet music. The score matches the actual audio and the app leads the player through the score in sync with the audio. Finally, the CSP’s guide lights make a game of playing the notes in the simplified score.

We’ve already seen apps from Yamaha with some of these features. Chord Tracker analyzes a song from your audio music library and generates a chord chart. Kittar breaks a song down into musical phrases that can be repeated, transposed and slowed down for practice. The Smart Pianist app includes Chord Tracker functionality and takes it to another level producing a two stave piano score.

Notice that I said “a score” not “the score.” Yamaha’s audio analysis only needs to be good enough to produce a simple left hand part and the melody. It does not need to generate the full score for a piece of music. Plus, there are likely to be legal copyright issues with the generation of a full score. (A derivative work?)

Still, this is an impressive technical feat and is the culmination of years of research in music analysis. Yamaha have invested heavily in music analysis and hold many patents. Here are a few examples:

  • U.S. Patent 9,378,719: Technique for analyzing rhythm structure of music audio data, June 28, 2016
  • Patent 9,117,432: Apparatus and method for detecting chords, August 25, 2015
  • U.S. Patent 9,053,696: Searching for a tone data set based on a degree of similarity to a rhythm pattern, June 9, 2015
  • U.S. Patent 9,006,551: Musical performance-related information output device, April 14, 2015
  • Patent 9,275,616: Associating musical score image data and logical musical score data, March 1, 2016
  • U.S. Patent 9,142,203: Music data generation based on text-format chord chart, September 22, 2015

The last patent is not music analysis per se. It may be one of several patents covering technology that we will see in the next Yamaha top of the line (TOTL) arranger workstation.

I think we will be seeing more features based on music analysis. Yamaha’s stated mission is to make products that delight customers and to provide features that are not easily copied by competitors. Yamaha have staked out a strong patent position in this area let alone climbing over the steep technological barrier posed by musical analysis of audio.

Copyright © 2017 Paul J. Drongowski

SSP1 and SSP2: Designated hitter

One notable absence from the Yamaha PSR-S970 design is the “SSP2” integrated circuit (IC) which handles vocal harmony processing. The SSP1 and SSP2 appeared in the Tyros series and PSR series coincident with Vocal Harmony 2.

For you signal sleuths, the PSR-S950 and Tyros 5 microphone input is routed to an analog-to-digital converter (ADC) where the analog signal is sampled and digitized. The digital sample stream is sent to the SSP2 IC. The firmware munges on the samples and voila, the SSP2 produces a vocal harmony signal that is mixed with samples from the tone generator, etc. The SSP2 sends its results to the TG where effects and mixing are performed. The TG sends its output to the digital-to-analog converters (DAC) and digital amplifiers. The Tyros 4 has the same signal flow using an earlier model “SSP1” processor instead.

Previous machines with vocal harmony (e.g., Tyros 3 and earlier, PSR-S910 and earlier), routed the digitized microphone stream to a tone generator (TG) IC such as the SWP51L. Presumably, vocal harmony processing was performed in the TG IC. With the brand new SWP70 tone generator in the S970, the digitized microphone stream is sent to the SWP70. Looks like vocal harmony processing is folded into the SWP70 TG.

I didn’t give the SSP2 much thought or investigation, and just assumed that it was a gate array or something. On inspection, the pin-out resembles a Renesas embedded DSP processor with analog inputs and outputs, digital I/O, USB and all of the usual suspects. The SSP2 in the S950 has 2MBytes of NOR flash program ROM (organized 1Mx16bits) and 2MBytes of SDRAM (organized 1Mx16bits). The clock crystal is a leisurely 12.2884MHz although the SDRAM read clock is 84.7872MHz.

Mysteriously, a web search on the part numbers doesn’t turn up much information. The part numbers are:

    Schematic ID  Manufacturer?       Yamaha
    ------------  ------------------  --------
    SSP1          MB87S1280YHE        X6363A00
    SSP2          UPD800500F1-011-KN  YC706A0

The PSR-S950 parts list does not give a Yamaha order number for the SSP2. If the SSP2 fails, you’ll need to call Yamaha 24×7 directly.

A web search does turn up a few of the interesting places where the SSP has been seen. In addition to Tyros 4, Tyros 5 and S950, the SSP and SSP2 are featured in:

    PSR-S500 arranger (probable role: effects processor)
    EMX5016CF mixer (role: SPX effects and user interface)
    Steinberg UR22 audio interface
    Steinberg MR816 Firewire audio interface
    Yamaha THR modeling guitar amplifier

The SSP is Yamaha’s designated hitter when they need an odd bit of DSP work done.