Tenor to the max!

A few posts ago, I deconstructed the Yamaha MOX (Motif XS) tenor saxophone patches. The article summarizes the waveform assignment and Expanded Articulation (XA) control for each element within a preset voice. I’m not going to dive into the basics here, so I recommend reviewing the article for background information on XA and its behavior.

The blog entry covered the MOX (Motif XS) tenor sax presets, but not the newer Motif XF (MOXF) presets. The XF series workstations have two additional waveforms:

  1. Tenor Sax2 Growl
  2. Tenor Sax2 Falls

bringing the XF up to the level of Tyros/PSR Super Articulation tenor sax voices. This article deconstructs the “Tenor MAX” preset which makes use of these additional waveforms. The analysis is relevant even in the Montage era because the Montage tenor sax is based upon the XF waveforms (no update in the new model).

Pushing the main topic aside for a moment, Super Articulation 2 (SArt2) voices are a whole different technology and even to this day, the Motif and Montage do not implement SArt2 voices. SArt2 seems to be a premium feature that is reserved for Tyros. SArt2 requires realtime analysis of playing gestures and computation which is beyond basic AWM2 synthesis.

The table below gives the waveform, key range, and velocity range for each element in the “Tenor MAX” patch.

    Elem#  Waveform            XA        Notes   Velocity
    -----  ------------------  --------  ------  --------
      1    Tenor Sax2 Soft     AllAFOff  C-2 G8    1   79
      2    Tenor Sax2 Med      AllAFOff  C-2 G8   80  110
      3    Tenor Sax2 Growl    AllAFOff  C-2 G8  126  127
      4    Tenor Sax2 Hard     AllAFOff  C-2 G8  111  125
      5    Tenor Sax2 Hard     AF2 On    C-2 G8    1  127
      6    Tenor Sax2 Falls    AF1 On    C-2 G8    1  127

When the AF1 and AF2 buttons are OFF, one of the first four waveforms are triggered based upon the key velocity. The four elements cover the dynamic range from soft, through medium, through hard, all the way up to growl. The AF1 and AF2 buttons select particular waveforms depending upon the player’s intention. When AF2 is ON, all key velocities trigger the hard waveform. When AF1 is ON, all key velocities trigger sax falls.

So, bottom line, the “Tenor MAX” programming is just about what I expected.

I hope the analysis of tenor sax programming has helped you to understand XA and Motif/MOX voice programming. If you’re a Tyros/PSR player, then I hope that this analysis has helped you to understand a little bit of the technology beneath the Super Articulation voices.

Explicit Sax

Hope you got your Motif XF. The current stock is gone, gone, gone.

Comparing waveforms (Montage vs. XF) got me interested in the tenor sax samples and voices. The Yamaha MOX has the basic tenor sax samples (Med, Hard, Growl) while the Motif XF rounds out the set with Soft dynamic samples and falls. The XF (and MOXF) showcase the tenor sax in the “Tenor Max” preset voice.

Since I was curious to discover “what I’m missing,” I deconstructed four tenor sax patches on the MOX. Also, I compared the MOX voices against the Super Articulation tenor sax voices on the PSR-S950 arranger workstation in a listening test. The A/B test was enlightening as the MOX and S950 use the same waveforms — at least to my aging ears! The S950 triggers the samples using Super Articulation (SA) rules while the MOX triggers the samples using Expanded Articulation (XA) rules. Rules aside, you get to the same sonic place.

With XA, there are three main ways that samples are selected and triggered:

  1. Normal: Triggered when keys are played in the regular way.
  2. Legato: Triggered when Mono/Poly mode is Mono and keys are played in a legato manner, i.e. one or more keys are held while a new key is struck.
  3. AF1 and AF2: Triggered when either AF1 is ON, AF2 is ON or AF1/AF2 are both OFF and a key is struck. (The switch states are exclusive.)

See the Yamaha Synthesizer Paramater Manual for all the gory details. XA and SA differ in the amount of automated decision making made by the control software. SA is more automated and XA is more manual, giving the player more explicit control over articulations.

First up is the PRE5:008(A08)Tenor Dynamic AF1 voice. The AF1 and AF2 buttons are assigned in the following way:

    AF1: Mono/Poly mode
    AF2: FEG-D1

The AF1 and AF2 buttons do not affect sample selection in this voice other than putting the keyboard into Mono mode or Poly mode. Thanks to this simplification, it’s a good place to start ‘splaining.

The table below gives the waveform, key range, velocity range and volume level for each element in the patch.

    Elem#  Waveform            XA      Notes   Veloc  Level
    -----  ------------------  ------  ------  ------ -----
      1    Tenor Sax2 Med      Normal  C-2 G8  1   60   110
      2    Tenor Sax2 Med      Normal  C-2 G8  61  90   110
      3    Tenor Sax2 Med Of   Legato  C-2 G8  1   90    86
      4    Tenor Sax2 Hard     Normal  C-2 G8  91 127   120
      5    Tenor Sax2 Hard Of  Legato  C-2 G8  91 127    95
      6    Small Tabla Dom     Legato  C4  G8  1  127    52
      7    Small Tabla Dom     Legato  C-2 B3  1  127    78
      8    Sine                Legato  C-2 G8  1  127    78

The element levels are programmed to even out the perceived loudness across waveforms. Of course, there are many parameters for each element beyond what is shown in the table. For example, each dynamic level (velocity range) has its own filter and amplitude characteristics. There may even by a little velocity-sensitive pitch scoop at the beginning of a note!

The tenor sax waveforms (elements 1 to 5) cover the entire key range: C-2 to G8. The waveforms are assigned to different velocity ranges and are selected (and triggered) depending upon Normal or Legato playing gestures. The first element is triggered when a Normal (detached) gesture is detected and the key velocity (i.e., how hard the key is struck) is between 1 and 60 inclusive. The second element is triggered under the same conditions except the key velocity is between 61 and 90 inclusive. The AF1 button toggles between Mono and Poly mode — whether a legato gesture triggers a Legato element or Normal element.

You can see that only one of the first 5 elements is triggered at a time depending upon the combination of gesture, note range and velocity range. The Tenor Sax2 Med waveforms are played for quieter dynamic levels and the Tenor Sax2 Hard waveforms are played for the louder dynamic levels.

The Tenor Sax2 Med Of and Tenor Sax2 Hard Of waveforms are triggered by a Legato playing gesture. The “Of” in the waveform name means “Offset” and sample playback starts later in the waveform data, that is, skipping the attack part of the waveform. This eliminates the initial attack which is characteric of a sax playing detached notes.

Elements 6 to 8 are triggered only for Legato notes. These elements add a low-level “pop” at the beginning of each note. Think of this sound as a “connective tone” between notes. Tyros’s Super Articulation 2 technology (also known as “Articulated Element Modeling”) blends actual connective tones between notes, producing realistic articulations. The blending requires considerably more samples and processing power than the MOX or the S950.

The PRE5:009(A09) Tenor Soft Legato voice is a simplified version of the first patch. AF1 selects Mono and Poly modes. (AF2 is unassigned.) The patches use only the “Med” waveforms to achieve an overall softer timbre.

    Elem#  Waveform            XA      Notes   Veloc  Level
    -----  ------------------  ------  ------  ------ -----
      1    Tenor Sax2 Med      Normal  C-2 G8  1   70   110
      2    Tenor Sax2 Med Of   Legato  C-2 G8  1   80    99
      3    Tenor Sax2 Med      Normal  C-2 G8  71 127   110
      4    Tenor Sax2 Med Of   Legato  C-2 G8  81 127    99
      6    Small Tabla Dom     Legato  C4  G8  1  127    46
      7    Small Tabla Dom     Legato  C-2 B3  1  127    75
      8    Sine                Legato  C-2 G8  1  127    59

There are two dynamic levels (lower and higher velocity ranges) and two playing gestures (Normal and Legato) forming four combinations of dynamic level and gesture. Elements 6 to 8 implement a connective tone as previously described.

Life gets more interesting in the PRE5:0010(A10) Velo Growl Legato patch. AF1, again, selects Mono and Poly modes. (AF2 is unassigned.)

    Elem#  Waveform            XA      Notes   Veloc   Level
    -----  ------------------  ------  ------  ------- -----
      1    Tenor Sax2 Hard     Normal  C-2 G8  1    60   119
      2    Tenor Sax2 Med Of   Legato  C-2 G8  1    60    86
      3    Tenor Sax2 Growl    Normal  C-2 G8  61  127   125
      4    Tenor Sax2 Hard Of  Legato  C-2 G8  61  100   102
      5    Tenor Sax2 Growl Of Legato  C-2 G8  101 127    94
      6    Small Tabla Dom     Legato  C4  G8  1   127    52
      7    Small Tabla Dom     Legato  C-2 B3  1   127    78
      8    Sine                Legato  C-2 G8  1   127    78

There are roughly three dynamic levels:

  • Velocity 1 to 60: A hard attack is triggered for Normal notes and a soft attack, medium sax is triggered for Legato notes.
  • Velocity 61 to 100: A growl sax is triggered for Normal notes (up to velocity 127) and a soft attack, hard sax is triggered for Legato notes.
  • Velocity 101 to 127: A soft attack, growl sax is triggered for Legato notes.

This programming allows interesting one-hand control. Play soft to get a pure sax tone and play hard to get a growl. Play detached to get a harder attack and play legato to get a softer note attack (when Mono mode is selected via AF1).

The fourth and final patch is PRE5:011(A11) Tenor Growl AF1. The buttons are assigned in the following way:

    AF1: Mono/Poly mode and growl waveform
    AF2: Tenor Sax1 waveform

As you’ll see in the table below, the AF2 button selects the original Motif Tenor Sax1 waveform.

We again have two dynamic levels triggered by velocity ranges 1 to 100 and 101 to 127. Here, the assignable function buttons really come into play.

    Elem#  Waveform            XA        Notes   Veloc   Level
    -----  ------------------  --------  ------  ------- -----
      1    Tenor Sax2 Med      AllAFOff  C-2 G8  1   100   120
      2    Tenor Sax2 Hard     AllAFOff  C-2 G8  101 127   125
      3    Tenor Sax2 Growl    AF1 On    C-2 G8  1   127   127
      4    Tenor Sax2 Hard Of  Legato    C-2 G8  101 127   102
      5    Tenor Sax2 Hard Of  Legato    C-2 G8  1   100   102
      6    Tenor Sax1          AF2 On    C-2 G8  1   127   119

AF1 brings in a growl waveform (element 3) when it is turned ON. AF2 brings in an entirely different tenor sax waveform and tone (element 6) when it is turned ON. The first two elements play a pure tenor sax tone when all AF buttons are OFF. Elements 4 and 5 play a hard sax tone with a softer attack for legato playing gestures. You would be hard pressed to think about these combinations when actually playing — you just have to “go for it” intuitively, knowing that AF1 kicks in the growl.

Turning OFF AF1 while holding the key cuts off the note. Whether this is a bug or a feature is your’s to decide!

The effect programming in these four presets is not very adventurous. The effects are appropriate for a laid-back, mellow sound. Here’s a quick breakdown:

    Preset voice        Insert A   FX preset    Insert B    Dry/Wet
    -----------------  ----------  ---------  ------------  -------
    Tenor Dynamic AF1  VCM EQ 501    Flat     TempoCrosDly   D63>W
    Tenor Soft Legato  VCM EQ 501    Flat     TempoCrosDly   D59>W
    Velo Growl Legato  VCM EQ 501    Flat     TempoCrosDly   D54>W
    Tenor Growl AF1    VCM EQ 501    Flat     TempoCrosDly   D63>W

The Insert A effect is the VCM multi-band EQ. The EQ curve is flat, so the EQ is not coloring the sound at all. The Insert B effect is a tempo cross delay. The dry/wet mix is set conservatively (D54>W) or just plain off (D63>W). The system CHORUS effect is not applied and the system REVERB is a nice REV-X reverb.

The effect programming on the PSR-S950 is a little more exciting and adds a grittier sound for rock and R&B. The RockSax voice employs a distortion plus delay effect algorithm:

    PSR effect: DISTORTION+ > DST+DELAY1

    Parameter       Value
    --------------  --------
    LCH Delay       250.0 ms
    RCH Delay       300.0 ms
    Delay FB Time   375.0 ms
    Delay FB Level  +16
    Delay Mix       50
    Dist Drive      10
    Dist Output     110
    Dist EQ Low     +3 dB
    Dist EQ Mid     +1 dB
    Dry/Wet         D40>W

Transporting this effect to the MOX, you could assign AMP SIMULATOR 2 to insert A. For insert B, you could stick with the tempo cross delay or you could program a fixed delay instead (e.g., DELAY L,R (STEREO)) using the parameters above. A third possibility is to use the MOX’s COMP DISTORTION DELAY algorithm which combines the distortion and delay into a single effect block.

The S950 GrowlSax voice uses a different distortion plus delay algorithm:

    PSR effect: DISTORTION+ > V_DST S+DLY

    Parameter       Value
    --------------  --------
    Overdrive       14%
    Device          Dist2
    Speaker         Combo
    Presence        6
    Output Level    98%
    Delay Time L    250.0 ms
    Delay Time R    250.0 ms
    Delay FB Time   500.0 ms
    Delay FB Level  +12
    Dry/Wet         D32>W
    Delay Mix       44
    FB High Dump    1.0

Programming options are similar. Set MOX insert A to AMP SIMULATOR 1 and either stay with the tempo cross delay for insert B, or set insert B to a fixed delay algorithm. Or, run everything through the MOX’s COMP DISTORTION DELAY algorithm. Tune the Dry/Wet mix to taste.

Hey, here’s a bonus — the effects for the S950 slapback guitar. This might sound good with a sax, too.

    PSR effect: DISTORTION > V_DIST ROCA

    Parameter       Value
    --------------  --------
    Overdrive       20%
    Device          Vintage
    Speaker         Twin
    Presence        14
    Output Level    66%
    Delay Time      16th/3
    Delay FB Level  +3
    L/R Diffusion   +10ms
    Lag             +0ms
    Dry/Wet         D<W63
    Delay Mix       127
    FB High Dump    1.0

In this case, go with AMP SIMULATOR 1 for MOX insert A. Use either the tempo cross delay for insert B or change insert B to the TEMPO DELAY STEREO algorithm.

Even though I’ve discussed voice and effects programming in the context of the MOX, these techniques all apply to the Motif XS, XF and MOXF, too.

If you would like to know more about Super Articulation voices, then please check out: SA and SA2: Is Motif up to the task? I also saved two informative posts from the Motifator forum about Super Articulation and Expanded Articulation.

Read about Motif XF (MOXF) “Tenor MAX” voice programming. Update: 18 May 2016.

(Re)take the stage

A good show starts in the dressing room
And work its way to the stage
— “Get Dressed” by George Clinton

With Winter NAMM 2016 just a few weeks away, I started thinking about how Yamaha might position a new synthesizer workstation (rumored to have the name “Montage”).

Motif has had a long run as a stage instrument favored by many professional touring musicians. It makes a good master controller for a backstage rig and has a wealth of great native sounds. The synth- and piano-key actions are extremely playable with good key-to-sound response.

Over the last few years, Nord and more recently Korg have been taking the stage away from Yamaha. The Nord Stage and Electro series are firmly established as gig boards and the Korg Kronos is coming on strong. Korg products seem to be sprouting everywhere on The Late Night with Stephen Colbert thanks to John Batiste — who can really rock ’em.

I doubt if Yamaha is willing to surrender the stage. This news may disappoint those players who are hoping for a mind-blowing (virtual) analog synthesizer. As a business-person, I would say, “Hmm, we made good money on the stage and in the studio with Motif. Let’s build on that success. Besides, there are plenty of ’boutique’ vendors who make great instruments, like Dave Smith.” Yamaha even granted the name “Sequential” back to Dave Smith.

Yamaha may see the Nord Stage and Korg Kronos as their primary competition for the stage in the synth workstation space. Both instruments combine multiple synthesis techniques into a single integrated package:

  • Wavetable synthesis including sample playback
  • Analog synthesis
  • Frequency Modulation (FM) synthesis
  • Acoustic and electric piano emulation
  • B3 and combo organ emulation

So, which pieces are missing in the current Motif XF? Are you thinking “Reface” yet?

Let’s look at these aspects in turn.

Wavetable synthesis and sample playback

More than a few Internet posters slag AWM (Advanced Wave Memory). I suspect that many of these people would like real analog or modeled analog instead. That’s OK by me because they probably need those sounds for their music. However, there is a wide customer base who need “traditional” instruments (brass, strings, woodwinds, etc.) where sample-playback still rules. AWM is a very successful sample-playback engine and I don’t see Yamaha abandoning AWM.

Yamaha have a new tone generation engine, the SWP70 . The SWP70 is already at work in the PSR-S970 and PSR-S770 arranger workstations . The SWP70 is more than a sample-playback engine as it also performs programmable digital signal processing for effects and more. The S970 implements Motif-quality sounds and effects including Virtual Circuit Modeling (VCM) and the Real Distortion effects that were added to Motif XF in the v1.5 update.

Other posters feel that an SSD is essential for sample streaming. SSD is only one approach, however, and that approach requires a SATA interface for sample I/O. SSD is not necessarily the cheapest design nor does it minimize latency. Yamaha deconstructed the SSD functionality, threw away the SATA interface cost and latency, implemented an Open NAND Flash Interface (ONFI), and embedded sample data caching into the SWP70. The SWP70 has all of the extensibility of NAND flash without the cost of the SATA controller and without SATA bus latency.

As demonstrated by the S970 and S770, the SWP70 is ready to roll for sample-playback and effects processing.

Analog synthesis and FM synthesis

I contend that the Reface products are a field test for SWP70-based synthesis methods that are not tested by the S970 and S770. I have not yet seen absolute evidence that Reface keyboards use the SWP70, but my suspicion is strong.

The Reface CS and Reface DX demonstrate analog physical modeling and 4-operator FM sound synthesis, probably using the SWP70. Please remember that the SWP70 is not just sample-playback; there are digital signal processors in there. These DSP units can be programmed for effects (reverb, etc.) or sound generation. A computer is a computer whether it is an x86 architecture machine or an embedded DSP. Both the Reface CS and Reface DX implement VCM effects, too.

Two more general points about the Reface line. First, the Reface keyboards use an ARM architecture (FM3) processor for control and user interface. This is a major departure from past Yamaha practice. Next, all four keyboards operate on battery power (six “AA” batteries). Low power operation is a significant engineering accomplishment and means that the SWP70 could be deployed in a wide range of portable products — not true of the previous generation SWP51L tone generator.

Acoustic and electric piano emulation

Yamaha demonstrated its commitment to the stage when it introduced the CP1 stage piano and its siblings. The CP1 was well-received.

The CP1 is a bit of a breakthrough product technically. The acoustic piano is implemented mainly through sample-playback. The CP1 physical wave memory is only 128 MBytes. Yamaha eventually released the CP1 acoustic piano samples for Motif XF as part of the Motif XF Premium Collection. We should expect a CP1-level piano or better in the new workstation.

Yamaha “got away” with so few samples overall because the CP1 electric pianos are implemented using Spectral Component Modeling (SCM). “SCM” covers a family of technologies including spectral modeling synthesis (SMS). SMS replaces gobs of samples with computation (AKA “modeling”). SMS eliminates the nasty sonic artifacts due to velocity switched sample-playback because, well, there aren’t any samples, just lots of computations to be performed very quickly.

The Reface CP uses SCM to implement its electric pianos. The Reface CP sounds great. (See my Reface CP snap review.) The Reface CP re-introduces Formulated Digital Sound Processing (FDSP) to model the electric piano pickup. I expect to see SCM electric pianos and a subset of FDSP in the new workstation.

B3 and combo organ emulation

B3 emulation has never been Motif’s strong suit. Nord, in particular, excel at B3 and rotary speaker emulation. Hopefully, Yamaha have addressed this defficiency by incorporating the Reface YC technology into their new workstation.

The Reface YC provides a live front panel that lets a player control the B3 drawbars, percussion, vibrato and rotary speaker on the fly. The ability to play the bars, etc. is essential to B3 technique. A few important improvements include a rotary speaker brake (STOP) position as well as SLOW and FAST, a vibrato/chorus section, and a full percussion section. Hopefully, the vibrato/chorus section emulates the Hammond vibrato/chorus scanner — an effect that is lacking in the Motif (and Tyros/PSR, for that matter).

The Reface YC implements B3 tonewheels through AWM. Is sample-playback better than Nord’s modeling? Of course, a lot rides on rotary speaker simulation, too. I can’t wait to find out. So far, I haven’t been able to find a Reface YC to try one out! If Yamaha wants to take the stage, again, it needs to nail this one.

The bottom line

Yamaha surely have the basic technology to make a machine for stage performers. Hopefully, they have implemented a user interface that is easy to learn, responsive and fun to play — kind of like the live front panels in the Reface series.

The Tyros and the new S770/S970 arrangers sport large displays. The S770 and S970 wide-screens are really nice. Lately, Yamaha have placed greater emphasis on skeuomorphic user interfaces with virtual knobs, sliders, etc. Whether Yamaha goes for a touch panel, only Yamaha knows at this point. It would be kind of cool to have virtual Reface front panels with finger-tweaking controls. But, would it be playable?

Sixteen days to go to Winter NAMM 2016 …

If you liked this article, you might enjoy:

New Yamaha workstation at NAMM 2016?
Reface YC and DX teardowns
The SWP70 tone generator
PSR-S770 and S970 internal architecture
Reface CP: Yes, I played one!

Copyright (c) 2016 Paul J. Drongowski

Crunchin’ da drums

In my last post, I discussed Motif/MOX eight zone (8Z) drum kits. The eight zone concept lets you assemble eight different percussion sounds into a custom kit. The waveforms are assigned to voice elements and are stretched/limited to eight different keyboard (MIDI note) zones. The Motif/MOX have matching arpeggios that work with the 8Z kits.

By the way, the 8Z drum kits were first introduced with the Motif XS. My notes on the 8Z kits and this note on effects apply to all later models including the Motif XF and MOXF.

If you have ever tried the percussion sounds alone without effects, the drum sounds are kind of “plain Jane” without a lot of impact. This post deconstructs a couple of effects which can be applied to break beats and other styles that require crunch and animation.

The first effect chain is taken from the Voice PRE8:060 “8Z Romps.” The voice has two insert effects connected in series. INSERT A is a Lo-Fi algorithm with the following parameters (effect preset “Max Lo-Fi”):

    #  Parameter              Value    Numeric
   --  ---------------------  -------  -------
    1  Sampling Freq Control  4.01KHz  (10)
    2  Word Length            93       (93)
    3  Output Gain            +7 dB    (14)
    4  LPF Cutoff             20.0KHz  (60)
    5  Filter Type            Radio    (2) 
    6  LPF Resonance          10.0     (100)
    7  Bit Assign             2        (2)
    8  Emphasis               On       (1)
   10  Dry/Wet                D<W63    (127)
   15  Input Mode             Stereo   (1)

The parameter number, name, values, etc. are taken from the MOX Data List. (See the section titled “Effect Parameter List” in the PDF file). The numeric values — given here in decimal — are what you need to program the effect through System Exclusive MIDI messages. More about this in a minute.

The Lo-Fi effect adds a lot of crunch and crush. But, wait! There’s more. The INSERT B effect is the AmpSim 1 amp simulator. Its parameters are:

    #  Parameter              Value    Numeric
   --  ---------------------  -------  -------
    1  Over Drive             54%      (54)
    2  Device                 dst1     (2)
    3  Speaker                Combo    (2)
    4  Presence               +10      (10)
    5  Output Level           34%      (34)
   10  Dry/Wet                D<W63    (127)

This is the “Beat Crunch” effect preset.

Please remember that my goal is to use the 8Z break beats in a PSR/Tyros style. In order to do accomplish this, I found the equivalent effects algorithms for the Yamaha PSR-S950 arranger workstation. Here are the equivalent algorithms:

    MOX            PSR-S950
    --------       -----------------------------
    Lo-Fi    --->  Lo-Fi DRUM1 (MSB:94 LSB:18)
    AmpSim 1 --->  V_DIST CRUNC (MSB:98 LSB:18 )

Unfortunately, the XG effects architecture supports at most one system-wide variation effect or one per-part insert effect. So, I decided to use the Lo-Fi algorithm because it seemed to provide most of the grit and nastiness that I was seeking.

It took a little detective work to find and match up the corresponding effect algorithms between the Motif/MOX and the PSR/Tyros. The effect type is enough to get into the same neighborhood. The rest of the sleuthing involves comparing the parameter lists in order to find the exact (or best) match. The MOX has Virtual Circuit Modeling (VCM) effects and the S950 does not. Therefore, you may not always be able to find an exact match.

With the S950 Data List in hand, I translated the effect parameters into the hexadecimal System Exclusive (SysEx) messages to configure the Lo-Fi effect on the PSR:

    F0 43 10 4C 02 01 40 5E 12 F7   Variation Type
    F0 43 10 4C 02 01 5A 01 F7      Variation Connection (SYSTEM)
    F0 43 10 4C 02 01 42 00 0A F7   PARAMETER 1 Sampling Freq Control (10)
    F0 43 10 4C 02 01 44 00 5D F7   PARAMETER 2 Word Length (93)
    F0 43 10 4C 02 01 46 00 0E F7   PARAMETER 3 Output Gain (14)
    F0 43 10 4C 02 01 48 00 3C F7   PARAMETER 4 LPF Cutoff (60)
    F0 43 10 4C 02 01 4A 00 02 F7   PARAMETER 5 Filter Type (2)
    F0 43 10 4C 02 01 4C 00 64 F7   PARAMETER 6 LPF Resonance (100)
    F0 43 10 4C 02 01 4E 00 02 F7   PARAMETER 7 Bit Assign (2)
    F0 43 10 4C 02 01 50 00 01 F7   PARAMETER 8 Emphasis (1)
    F0 43 10 4C 02 01 54 00 7F F7   PARAMETER 10 Dry/Wet (127)
    F0 43 10 4C 02 01 74 01 F7      PARAMETER 15 Stereo  (1)

I configured the effect as a system-wide variation effect such that multiple percussion parts may be sent to the effect. I inserted the SysEx messages into the set-up measure of the PSR style file using SONAR (my usual DAW/sequencer). Yow, the difference between the percussion sounds without and with this effect is like night and day!

The MOX insert effects are followed by a system-wide Tempo Cross Delay effect (effect preset “4beat Echo”). This effect adds a nice bit of animation to the overall sound. The MOX effect parameters are:

    #  Parameter              Value    Numeric
   --  ---------------------  -------  -------
    1  Delay Time L>R         4th      (11)
    2  Delay Time R>L         8th.     (10)
    3  Feedback Level         16       (80)
    4  Input Select           L        (0)
    5  Feedback High Dump     0.5      (5)
    6  Lag                    0ms      (64)
   10  Dry/Wet                D<W63    (127)
   13  EQ Low Frequency       250Hz    (22)
   14  EQ Low Gain            0dB      (64)
   15  EQ High Frequency      4.0KHz   (46)
   16  EQ High Gain           0dB      (64)

The equivalent S950 effect is TEMPO CROSS1 (MSB:22 LSB:0). I assigned this effect to the system-wide CHORUS block.

Here are the S950 (XG) SysEx messages to configure the delay effect in the CHORUS block:

    F0 43 10 4C 02 01 20 16 00 F7  Chorus Type TEMPO CROSS1
    F0 43 10 4C 02 01 22 0B F7     PARAMETER 1 Delay Time L<R     (11)
    F0 43 10 4C 02 01 23 0A F7     PARAMETER 2 Delay Time R<L     (10)
    F0 43 10 4C 02 01 24 50 F7     PARAMETER 3 Feedback Level     (80)
    F0 43 10 4C 02 01 25 00 F7     PARAMETER 4 Input Selection    (0)
    F0 43 10 4C 02 01 26 05 F7     PARAMETER 5 Feedback High Dump (5)
    F0 43 10 4C 02 01 27 40 F7     PARAMETER 6 Lag                (64)
    F0 43 10 4C 02 01 2B 7F F7     PARAMETER 10 Dry/Wet           (127)
    F0 43 10 4C 02 01 32 16 F7     PARAMETER 13 EQ Low Frequency  (22)
    F0 43 10 4C 02 01 33 40 F7     PARAMETER 14 EQ Low Gain       (64)
    F0 43 10 4C 02 01 34 2E F7     PARAMETER 15 EQ High Frequency (46)
    F0 43 10 4C 02 01 35 40 F7     PARAMETER 16 EQ High Gain      (64)

A little bit of delay on a busy drum part goes a long way. The send level (not shown here) is relatively low — just enough to add a little animation to the sound without creating a lot of clutter. It sounds OK, but I might adjust the send level dynamically and add more delay to exposed parts like the break while keeping the MAIN sections clean.

I hope this short effects clinic helps you out!